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Alternative approaches to numerical solution of 
superconductivity problems

1. FFT-based methods:
• Derived for thin film problems (Vestgården et al. 2012, 2013);
• Improved and extended to 3D bulk and stack problems (LP and 

Sokolovsky, 2018). 

2. Spectral methods (Sokolovsky and LP, 2020-2022):
• Chebyshev solution of singular 1D integral equations and their 

systems: homogeneous sc strips, stacks, pancake coils;
• Hermite-Chebyshev solution of 2D inhomogeneous strip problems.
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The critical sheet current density can depend on the magnetic field 

and be also  spatially inhomogeneous. The external magnetic field 
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We assume the inhomogeneities are localized:   as 
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Stream function reformulation
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At each moment in time, knowing   we need to find to proceed furth 
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Method of lines with Hermite - Chebyshev approximation in space
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The problem for is a singular 2D integro-differential equation.

The 1D Fredholm integral eqs with the Cauchy or logarithmic singularities 
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Our 2D equation with the Green-function-related kernel is more 

complicated; a new approach was needed. 
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For   we find the expansion derivative using  
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 The main variables are the grid v g ( ) (alues ,  where 

and are the roots of and the Chebyshev points , resp.
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• Sheet current density 
for I(T)=0 and 
I(1.25T)=200 A.

• Background color 
indicates the spatial 
inhomogeneity of the 
strip.

• Away from the strip 
inhomogeneity the 
sheet current density is 
close to the solution of 
the 1D problem for the 
homogeneous strip 
(red lines).

 Inhomogeneous strip, simulatioExample n re 1. sults
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The time-averaged loss power density <p>, high 
in the lower sheet critical current density area. 

 Inhomogeneous strip, simulatioExample n re 1. sults
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100 160 0.3 14 h --

 j
𝐂𝐨𝐧𝐯𝐞𝐫𝐠𝐞𝐧𝐜𝐞



 Strip in a nonuniform field :  Dynamo Example 2 flux . pump

Pump parameters: as in the simplified 1D 
benchmark problem (Ainslie et al, SuST 2020).
We performed a full 2D simulation for the 
open-circuit condition (I=0) assuming

Computed sheet current density for 
three rotor positions, 
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  Strip in a nonuniform field :  Dynamo Example 2 flux . pump
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Although its convergence is not exponential,

the Hermite-Chebyshe

Comparison with the mixed f. e. method 

(LP & Sokolovsky, 2021); 

v method is efficient 

and fully competitive with the mixed f
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Thank you for 
your attention!

Reference: Sokolovsky and Prigozhin, SuST (2022) 35, 024002

Conclusion:
We developed the Hermite-Chebyshev method, applicable to 
inhomogeneous superconducting strip problems with an 
arbitrary current-voltage relation. This method can be more
efficient than the mixed f.e. and the FFT-based methods.


