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Alternative approaches to numerical solution of
superconductivity problems

1. FFT-based methods:
* Derived for thin film problems (Vestgarden et al. 2012, 2013);
* Improved and extended to 3D bulk and stack problems (LP and

Sokolovsky, 2018).

2. Spectral methods (Sokolovsky and LP, 2020-2022):
* Chebyshev solution of singular 1D integral equations and their

systems: homogeneous sc strips, stacks, pancake coils;
 Hermite-Chebyshev solution of 2D inhomogeneous strip problems.



Problem formulation :
Let a thin strip of the width 2a be presented by a 2D domain inthez =0

plane: Q ={(x,y)| | X|< oo, |y |< a}. By the Faraday law

,uohz =—V XE&,
where e Is the parallel to strip electric field component, Vxe =0.e, —0d e,.
We assume e = p ] with, e.g., a power law for the nonlinear resistivity,

p=e,(illi)""/ .
The critical sheet current density J. can depend on the magnetic field h
and be also spatially inhomogeneous. The external magnetic field in the strip

plane, h®(x, y,t), can be spatially nonuniform too.
We assume the inhomogeneities are localized: as | x|—> o«

h*(x,y,t) > h, () and j.(x,y,h) > j.(h).



Stream function reformulation

For simplicity, the derivation is for I (t) =0, j.=const, h* -0 as | x|— .
Introducing the stream (magnetization) function, Vxg=j, ¢ isreie=10)]
and using the Green function G = (4 | r|)™ to express the magnetic field
Induced by the strip current, we arrive at the following formulation:

—ijG(r—r’)ﬁ’xg(r’,t)dr’= hf +,U0_1V><e,
Q

e=e,(IVxgllj) " Vxa/i.
g |y:4_ra: O’ g |t:O: gO’
where r = (X, y). For the dynamo pump problem such egs. were solved by the

FFT-based method and two f.e. methods (LP and Sokolovsky 2021,
Ghabeli, Pardo, Kapolka 2021).



Method of lines with Hermite - Chebyshev approximation in space
At each moment in time, knowing g we need to find g to proceed further.

—ijG(r—r’W’xg(r’,t)dr’: e + 1"V xe,
Q

ei= e Vg ) = VodgHh e tag sl — 0.
The problem for g is a singular 2D integro-differential equation.
The 1D Fredholm integral egs with the Cauchy or logarithmic singularities
can be very efficiently solved by the Chebyshev spectral methods.
Our 2D equation with the Green-function-related kernel is more
complicated; a new approach was needed.



Hermite - Chebyshev approximation in space
First, we apply the Fourier transform with respect to x (along the strip),

f(k,y,t)=F[f(x,y,t)], and use the convolution theorem.
In dimensionless variables
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this yields, for each wave number k, a 1D integro-diff. eq. for é(k y,t):
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where Z =h +0.e, —0,e,. The kernels contain the modified Bessel functions,

G(k,y)=(27) 'K, (|yk|]) and 0,G(k,y)=—(27)"|k|K,(]yk|)sign(y).
and are singular: for s — 0 we have K,(|s|) =—In(|s|/2), K/(s|)=1/]|s]|.




Hermite - Chebyshev approximation in space
Singling out the singularities, for each wave number we obtain

kj{ (k,y—y') —Eln(lklw y|j} (k, y',t)dy’ +

3
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where the functions A and & are regular. We now seek

g(k,y.t) = 1-y? Zam (t, K)U,, (y).

where U _ are Chebyshev polynomials of the second type. \Why in this form?

a) the boundary conditions g|,_,, = 0 hold automatically;

b) a very convenient analytical treatment of the singular terms.



Hermite - Chebyshev approximation in space
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where T_(y) are the Chebyshev polynomials of the first type, then employ

j Tm+1(y’) dyr b —7Z'Um (y)
(Y- Y)1- ¥
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The logarithmic singularity in jln(| y—y'1)g(k,y',t)dy’ is also treated
g

analytically. Interpolating double Chebyshev expansions of A and & are
used to compute the convolutions with these regular kernels.



Hermite - Chebyshev approximation in space
Knowing g(Xx,Yy,t) for time t, we compute |, e, then the r.h.s. of our eq.,

Z=h; +0,e, -0 e, and approximate its Fourie image Z = F (Z)

by a Chebyshev expansion. This enables us to find the coefficients

a, (t,k) in 'g’(k,y,t)=\/1—yzZam(t,k)Um(y)

and it remains to return to the real space, g = F (g).

This scheme needs an efficient numerical procedure for the Fourier
transform and Its inverse.
One can replace the strip by a finite one and use the FFT on a uniform grid.
Here we explored an alternative approach based upon Hermite functions.



Hermite - Chebyshev approximation in space
Hermite functions are expressed via Hermite polynomials H ; as

4 (X) = (72_1/4 M)_l a2 j (%),

satisfy the orthogonality relation j_oo Y W¥,dx = o, and the recurrent relation

.1 (X) =X /_LSUJ. (X) — /_LSUH(X).
]+1 J+1

Since F[¥, (x)] =27z (-i)' ¥, (k), computing Fourier transform and its
Inverse for expansions in Hermite functions is trivial.
For problems on the infinite axis, scaled basis functions #;(x/L) are used

to better approximate solution in its area of variation; in our case this area
IS a few times larger than the inhomogeneity domain.



Hermite - Chebyshev method : general scheme
1. The main variables are the grid values g, . (t) = g(Lx,, ¥,,,t), where X_

and y_ are the roots of H,_, and the Chebyshev points cos(zm/M), resp.

2. Double Hermite-Chebyshev interpolating expansions of the grid values are
used for numerical differentiation, Fourier transform, etc.

3. For problems with a field dependent j. magnetic field is efficiently
computed using the double Hermite-Chebyshev expansions.

4. Problems with a nonzero transport current I (t) and h® — h®*(t) = 0 at
infinity: a similar scheme for g” = g -g*°, where g™ is the solution of a

1D problem for a homogenous strip and the same I (t), h**, computed using
the Chebyshev spectral method.
5. Integration in time: Matlab ODE solver odel5s.



Example 1. Inhomogeneous strip with transport current
Let 2a =12 mm, | =200sin(2zt/T) A, T =0.02 s, h* =0, n=20.
The critical sheet current density
o= lcx" (N (h),
where
jo = 23.6 A/mm,
7" =1/(A+h;*|h |) - dependence on the magnetic field with h, =20 j?,
vy =1+p(x+a,y+a)—e(x—a,y—a) - spatial inhomogeneity with
o(X,y) = O.75exp(—:2x2 + y2]/a2),

l.e. J. IS higher near (-a,-a) and lower near (a,a) for the same h,.




Example 1. Inhomogeneous strip, simulation results
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Example 1. Inhomogeneous strip, simulation results
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Example 2. Strip in anonuniform field : Dynamo flux pump
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We performed a full 2D simulation for the
open-circuit condition (/=0) assuming
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Example 2. Strip in a nonuniform field : Dynamo flux pump
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Table. Convergence of the two methods.

Mixed finite element method Hermite-Chebyshev method
Mesh, number | Time per | oV, % Mesh Time per | OV, %
of elements | cycle (min) M | N[ L |cycle(min)

1056 3.4 45 |60 [30]0.7 33 24

2180 33 16 |90 (4606 31 0.9

4226 118 -~ (12060 | 0.5 186

Comparison with the mixed f. e. method
(LP & Sokolovsky, 2021); h, = .

Although its convergence is not exponential,
the Hermite-Chebyshev method is efficient
and fully competitive with the mixed f.e.
method.



Conclusion:

We developed the Hermite-Chebyshev method, applicable to
inhomogeneous superconducting strip problems with an
arbitrary current-voltage relation. This method can be more
efficient than the mixed f.e. and the FFT-based methods.

Reference: Sokolovsky and Prigozhin, SuST (2022) 35, 024002
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