Study of AC losses in HTS tapes coupling FEM and electrical circuits with harmonics

<u>Kévin Berger</u>¹ kevin.berger@univ-lorraine.fr Ghazi Hajiri¹ ghazi.hajiri@univ-lorraine.fr Bruno Douine¹ bruno.douine@univ-lorraine.fr

Frederic Trillaud²

FTrillaudP@iingen.unam.mx

Jean Lévêque¹ jean.leveque@univ-lorraine.fr

¹ Université de Lorraine, GREEN, F-54000 Nancy, France

² Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04350 CDMX, Mexico

Context of the work

Groupe de Recherche en Energie Electrique de Nancy DE INSTITUTO DE INGENIERÍA

Presentation Outline

- Modelling framework
- Circuit coupling with Simulink and COMSOL

 ★ LiveLink[™] for Simulink[®]
- Two case studies and two HTS samples
 - pure sine wave and half-wave rectified signal
 - \clubsuit a single tape and a coil
- Test bench and sample presentation
- Validation of the co-simulation
 AC losses of a single tape with pure sine
- More results with an HTS coil

In brief : **T-A** Formulation

Circuit coupling and FEM (LiveLinkTM for Simulink[®] since 2020)

Two case studies

Test bench

HTS samples: a single tape and a coil

Both samples are made with tapes manufactured by: Shanghai Superconductor Technology

AC losses calculation of a single tape @80Hz

The different time steps:

- \Box Maximum time step in Simulink (**ODE15** solver) : $t_{\text{Smax}} = T / 1000 = 12.5 \,\mu s$
- □ Maximum time step in COMSOL (MUMPS solver) : $t_{Cmax} = T / 1000$
- \Box Communication time step between the two softwares : $T / 500 < t_{SC} < T / 1000$

Electrical model validation with coil

□ Maximum time step in COMSOL (MUMPS solver) : $t_{\rm C} = T / 1000$

AC Losses for an HTS Coil in pure sine

ee

UNAM

11

HTS Coil with half-wave rectified signal

Influence of the communication step

- \Box Communication time step between the two softwares : $T / 100 < t_{SC} < T / 1000$
- □ The communication step between the two software has little influence for superconducting applications In general, the impedance of superconducting materials is very low compared to the impedance of the electrical network.

Tips to remember

Coupling processes https://www.comsol.fr/livelink-for-simulink Approach and tips for convergence problems related to superconductor nonlinearity. Step 1: check that each model works separately Variable time step Constant time step Ode15s, Ode23t ... Ode1(Euler), Ode3(Bogacji-Shampine),... Set the maximum time step: $1 / f / n_s$ Set the time step : $1 / f / n_s$ Step 2: $n_{\rm S}$ is chosen so that the results of Simulink alone are accurate Step 3: Do the same in COMSOL, it is recommended that n_c be identical within Simulink n_s . Step 4: The communication step between the two programs $n_{\rm CS}$ must be in the range 0.75 $n_{\rm S} < n_{\rm CS} < n_{\rm S}$ Execute and enjoy! **DE INGENIERÍA**

Conclusion

□ Co-simulation with LiveLink for Simulink currently shows some limitations in terms of

- $\boldsymbol{\bigstar}$ computation time
- ✤ buffer storage
- □ In some cases the AC losses can be estimated with a higher accuracy by strongly lowering the communication step
- Very particular phenomena can be simulated by including the real behavior of the electrical components, especially the switching ones
 - \clubsuit extraction of charge carriers
 - ✤ overvoltage...
- □ Results are encouraging and we can still consider the simulation of complex superconducting systems
 - ✤ See next presentation of Frederic Trillaud

Thank you for your attention

Kévin Berger, 🖀 +33 (0)3 72 74 50 98 🖂 e-mail: <u>kevin.berger@univ.lorraine.fr</u>

