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Numerical simulation of quench in HTS tapes

Blue = superconducting Problem with finite element simulations:

Red = quenched (T >T,) e Computationally expensive

e Impossible to simulate tape > few cm

e Need to variations of I_ along tape
length, i.e. I, = f(x)

Z,’
Interfacial Y /LAX
resistance
(RE)BCO

NZPV = Normal zone propagation velocity Buffer
layers vV r E(x)
Hastelloy (x) o
substrate
Electro-thermal simulation Silver
Nonlinear E-J characteristic layers
Full 3D mesh
Physics is 3-D, but output is typically 1-D
m
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Surrogate model to substitute an expensive FEM solver
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_ surrogate model
@ @ Machine
09 9 learning (ML)
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e QO model
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Physics modeling versus Data-Driven modeling

P hyS|CS Amount of data > Data

(Purely theory < Amount of scientific knowledge (Purely data
based) based)
No data Small data Big data
regime regime regime
Numerical techniques such Physics + data Machine learning techniques

as Finite Element Method Deep learning

Regime for

Physics-Guided
data-driven models
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Physics and things to take into account with ML model

Problem to solve:
Very nonlinear

Current continuity equation: V - (—Ha(T)VV) =0 = Solved for electric field E = grad(V)
Heat equation: Pm|Cp (T %—i; + V- (1k(T)VT) =|Q = Solved for temperature T
Multi-material Time-dependent Multi-material External time-
dependent
variable

Stabilizer

Challenges:
HTS

1) Nonlinear electric and heat equations

2) Multl-materlals geometry _ Substrate
3) Time dependence must be solved one step at a time

in arecursive manner
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Decoupling of the electric and the thermal problems

fe(T1) fe(T2)

El\ <E2 En:E(m:tn)
\ \
Ty \STl NG

fr(Eo,To) fr(E.1,T1)

Eo

W

T =T (z, ty)

Time >

fE : Electric problem The problem can be reduced to
JT : Thermal problem finding a good model for fr
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Electric field (V/m)

—
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Training of the electric problem

[}

Markers: True values
Line: Predicted values
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10" 102
Current (A)

e Fitted on 3D simulations of
quench propagation

e NN architecture: [4,10,1]
e 40 simulations
e 360,000 datapoints

Stabilizer

Substrate —_— I

Ax 2 E = AVIAx

E=[fg(I,1,,T)

Neural network
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Training of the thermal problem

Physics-Guided Recurrent Data-Driven model (PGRDD)

Nonlinear 1-D heat equation

NNN =| ’ : : i < |
eura
@) @ aT
network o9 = a—] +0(x, 1) = S /V -|h(T = To)|- (T - To)
NNo i *
®0 C
.9 @0 P
@ e —_————m T TTTTTET - - -
o @ _ - S~ -
NN, 2 ler| [alf, . ot s
Inputs ® @ i / « CO)YA = || kD)7 | + Qx, ) = S/V - (T = To) - (T —Top) 4
., [@) oo S~ = -
i—1 : I\\\\ ..:/ S~ __ -
TS @ kx| Y gmyr T TTTTETTT
Tiﬁ-l I.: — >>.7 Dufort-Frankel .
an ‘ KB * T"
1 . )
fo= | Dufort-Frankel = Two-step finite difference discretization scheme
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Training for the thermal problem

Physics-Guided Recurrent Data-Driven model (PGRDD) Training on recurrent predictions

NN, n = no. of :
NN = ®0 time step Loss: Lrro
Neural @ @0 0 / I \
network < . . .
‘ ‘ T'”f=0’T"’l=1 Tn=2 Tn=3 Tn=
NNe . @ ¢
e/ ®0g |
O o0
@ e anl Qn=2 Qn=3
NN, ;
Inputs 0 |
o0 : :
o (o 900 | outputs Material properties = Neural Networks (NN)
ol K' T‘ Data-driven model with physical constraints
i L ~n+1 o o o . . .
7, e -4 P T (finite difference scheme built-in) trained on
Y - . eq.(10) ¢ recursive predictions
' e Boal - Physics guided recurrent data-driven model

-1 i i+l -
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Data set used to train the thermal problem

150
T(0 ms)
140 | T(1 ms)
T(2 ms)
T(3 ms)
130 - T(4 ms)
T(5 ms)
120 T(B ms)
T(7 ms)
— T(8 ms)
%_5 1Mo T(9 ms)
T(10 ms)
100
90 +
80
70 | 1
0 2 4

X (mm)

Example of a 1-D FEM solution \
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Nonlinear 1-D heat equation solved by FEM:

oT
C(T)E =

— |

O(x, 1) = .

0 or
lk(T)a

/2_ x_

+0x,0)—=8/V T =To) - (T —Ty)

) e %)

Data set:
- 100 Simulations

- 1,000,000 datapoints
- 5 predictors, 1 target
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Accurate predictions for different level of complexity

110 :
—FEM Equation Heat source
100 4 ==~ FDM (Dufort-Frankel)
= - PGRDD 5 5
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110
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Minimization of the error accumulation

E

i - Minimization of error accumulation

% - Accurate long-time predictions

- - General for any initial states and heat
: sources

§ - Prediction takes ~1.6 seconds

% (whereas a single 3-D simulations

2 takes 25 minutes!)

% T o () *RMSE: error compared to FEM solution

T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Time (ms) _ _ it
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Generalization of the model to 3D effects

- 1-D simulations
100 @ (Complexity 3)
n
Q
% =
& 90 X
)
5]
80 E
140 - . .
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Q
120 E 10° (Complexity 3)
) =
= 107!
100 o
Q.2
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T T T T
6 2 4 6 & 10 0 > 4 6 8 10 I
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ML model is general enough to include 3D effects in 1-D model!
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Material properties can be extracted from data
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RMSE (K) (test set)

RMSE (K) (test set)

Conclusion

1D simulations

- - --- FDM
3D simulations il i
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Data-driven modeling is promising to develop
surrogate models for 3-D quench propagation
simulations in HTS tapes

It minimizes error accumulation caused by the
recurrence of the scheme

Surrogate model: general for any initial state and
heat source (no need for re-training)

3D simulations takes ~25 min
Surrogate model takes ~1.6 second
(~75 min training)
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