Novel results obtained by modeling of dynamic processes in superconductors

Iris Mowgood (Presenter)

Sara Chahid, Serafim Teknowijoyo, Armen Gulian (Co-Authors) Advanced Physics Laboratory, Institute for Quantum Studies, Chapman University, Orange, CA & Burtonsville, MD USA

HTS 2022 Modelling, Nancy, France

Overview:

HTS 2022

Modelling

TDGL Modelling in COMSOL Multiphysics® Previous Related Modelling Work Magnetic Flux Violation in SC Nano-rings Gravitational Wave Detector (GEFEST) Coupled Electron-Phonon Dynamics Phase Slip Centers (PSCs) Main Topic: **Cryocooling based on Phase Slip Centers** Negative Phonon Flux Cooling Mechanism

ICOMSOL

Superconductivity

Superconducting Electronics via COMSOL Modeling

Shortcut to

EXTRAS ONLINE

Armen Gulian

Springer

Time-Dependent Ginzburg-Landau Equations for PSCs

- Dimensionless and Gauge Invariant
- DC-Biased 1-D Wire Model

Published Results from 3-D Modelling

Magnetic Flux Violation

I. Mowgood et al, "Violation of magnetic flux conversation by superconducting nanorings," Supercond. Sci.&Technol., vol. 34, no. 4, February 2022, Art no. 045006

Published Results from 3-D Modelling

Magnetic Flux Violation

HTS 2022

Modelling

Distance from rings center (in λ_L units)

I. Mowgood et al, Supercond. Sci.&Technol., vol. 34, no. 4, February 2022, Art no. 045006

Published Results from 3-D Modelling

Gravitational Wave Detector

Gulian et al., "Gravitational wave sensors based on superconducting transducers," Phys. Rev. Res., vol. 3, November 2021, Art no. 043098, doi: 10.1103/PhysRevResearch.3.043098.

Coupled Electron-Phonon Dynamics of PSCs

- Non-Equilibrium Oscillatory Behavior
 - Current density \mathbf{j} > critical current j_0
 - Cooper-pair density (CPD)

Coupled Electron-Phonon Dynamics of PSCs

- Non-Equilibrium Oscillatory Behavior
 - Current density \mathbf{j} > critical current \mathbf{j}_0
 - Normal current j_n, supercurrent j_s and interference current j_{int}

Coupled Electron-Phonon Dynamics of PSCs

- Time dependency of Voltage
 - Average voltage is non-zero

Coupled Electron-Phonon Dynamics of PSCs Evolution of $\frac{\partial |\Psi|}{\partial t} \propto dn \propto dN_{\omega_q}$

HTS 2022

Modelling

Sign of phonon emission fluxes is time dependent.

- Phonon Fluxes
 - Periodically change of sign
 - Emission when $\delta(n_{\epsilon}+n_{-\epsilon})>0$
 - Absorption when $\delta(n_{\epsilon}+n_{-\epsilon})<0$

Positive phonon flux > Negative phonon flux

- External DC dissipates power due to PSC caused resistive state
- Time-average resistance is non-zero

- Cooler Design Concept
 - 1-D wire deposited onto substrate with higher acoustic density pu
 - ρ: mechanical density and u: phonon propagation speed
 - Phonons emitted by substate without total internal reflection

- Cooler Design Concept
 - Top plate fused onto of 1-D wire with lower acoustic density pu
 - Kapitza resistance occurs
 - Total internal reflection partially restricts wire's phonon emission

- Cooler Design Concept
 - Wire in phonon-absorption state
 - Thermal phonons from acoustically less dense top plate will propagate into wire without restriction.
 - Thermal phonons from the acoustically denser substrate suffers total internal reflection.

- Further work
 - Explore parameters of the system that allow greater outflow of phonons from top plate versus inflow.
 - Resulting cooling of top-plate and substrate remains at cold finger temperature.

Novel results obtained by modeling of dynamic processes in superconductors

Thank you. Questions?

Iris Mowgood (Presenter) Armen Gulian, Sara Chahid, Serafim Teknowijoyo (Co-Authors) Advanced Physics Laboratory, Institute for Quantum Studies, Chapman University, Orange, CA & Burtonsville, MD USA

HTS 2022 Modelling, Nancy, France

This work was supported by ONR Grants N00014-19-1-2265 and N00014-21-1-2879.

