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Overview:

» TDGL Modelling in COMSOL Multiphysics® | COMSOL
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Time-Dependent Ginzburg-Landau Equations for PSCs

* Dimensionless and Gauge Invariant
* DC-Biased 1-D Wire Model

Cooper pair density at different moments of time at j<J, o Cooper pair density at different moments of time at >}, a9
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Published Results from 3-D Modelling

Magnetic Flux Violation
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Published Results from 3-D Modelling

Magnetic Flux Violation

Time evolution of the applied magnetic field (H:) Flux density B: color coded in equatorial plane of the ring
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Animation of TDGL-COMSOL modeling results

related to Fig. 7 of the main text. | | | 3 1 1
Left top quadrant is the amplitude of external magnetic field | V O [ ] ] I l O [] ]

orthogonal to the ring plane vs. time.

Right top quadrant is magnetic flux density (B,) in the equatorial
cross-section of the ring. The direction of B, reverts at crossing e r u a ry
the ring in radial direction, and also inside the ring (it is positive ]
outside the ring circumference, zero in the middle of the ring

wire, negative near the internal wall of the ring, and again
positive in the central region. rt I l O
n

Dynamics of B, along the line through the ring center in the

equatorial plane is in right bottom quadrant. C | L
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Published Results from 3-D Modelling

Gravitational Wave Detector

Induced current amplitude
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Coupled Electron-Phonon Dynamics of PSCs

Cooper pair density during the oscillation period Cooper pair density during the oscillation period
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* Non-Equilibrium Oscillatory Behavior
 Current density | > critical current |,
» Cooper-pair density (CPD)
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Coupled Electron-Phonon Dynamics of PSCs

Cooper pair density during the oscillation period
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* Non-Equilibrium Oscillatory Behavior
« Current density j > critical current |,
* Normal current j,,, supercurrent j, and interference current j,
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Coupled Electron-Phonon Dynamics of PSCs

Modulus of W-function

Oscillation at central point of 1D-wire
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* Time dependency of Voltage
« Average voltage is non-zero
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Coupled EIectron-Phonon Dynamics of PSCs
Evolution of Lo dn dN,,

Oscillation at central point of PSC
S Sign of phonon
emission fluxes is
E = time dependent.
’ e Time {dimena;li.unless} *
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Cryocooling from Phase Slip Centers

Intensity of Phonon Flux emitted in spectral range @, (in relative units) Intensity of Phonon Flux emitted in spectral range @, (in relative units)
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Spectral Dependence of Phonon Emission
Spectral Dependence of Phonon Emission
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Phonon Frequency, W, Phonon Frequency, W,

* Phonon Fluxes  Positive phonon flux > Negative phonon flux

 Periodically change of sign « External DC dissipates power due to PSC caused resistive state
« Emission when &(n.+n_)>0 - Time-average resistance is non-zero
 Absorption when &(n.+n_)<0
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Cryocooling from Phase Slip Centers

SC filament’s cross section

top plate

substrate (bottom plate)

cold finger

Cross-sectional view of the cooler design.

« Cooler Design Concept

« 1-D wire deposited onto substrate with higher acoustic density pu
« p: mechanical density and u: phonon propagation speed

* Phonons emitted by substate without total internal reflection
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Cryocooling from Phase Slip Centers

SC filament’s cross section

top plate

substrate (bottom plate)

cold finger

Cross-sectional view of the cooler design.

« Cooler Design Concept
» Top plate fused onto of 1-D wire with lower acoustic density pu

« Kapitza resistance occurs
 Total internal reflection partially restricts wire's phonon emission
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Cryocooling from Phase Slip Centers

SC filament’s cross section

top plate

substrate (bottom plate)

cold finger

Cross-sectional view of the cooler design.

« Cooler Design Concept

» Wire in phonon-absorption state
« Thermal phonons from acoustically less dense top plate will propagate into wire without restriction.
« Thermal phonons from the acoustically denser substrate suffers total internal reflection.
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Cryocooling from Phase Slip Centers

* Further work

SC filament’s cross section

top plate

substrate (bottom plate)

cold finger

Cross-sectional view of the cooler design.

 Explore parameters of the system that allow greater outflow of phonons from top plate

versus inflow.

« Resulting cooling of top-plate and substrate remains at cold finger temperature.
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Novel results obtained by modeling
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