

Modelling the Dynamic Charging Process of High-T_c Coils by Dynamo-type Flux Pump

Pengbo Zhou Asef Ghabeli Francesco Grilli Mark Ansile

Pengbo.zhou@kit.edu

www.kit.edu

Motivation

- Model Description
- Test Case
- Results and Discussion
- Summary and future work

Motivation

Model Description

Test Case

Results and Discussion

Summary and future work

Motivation

[1] Tuvdensuren et al. 2018, Journal of Physics: Conference Series

Motivation

Non-linearity of HTS's resistivity enables the HTS to work like a "**switch**", leading to the rectification effect.

^[1] Mataria et al. 2020, PRA

Motivation

- Model Description
- Test Case
- Results and Discussion

Sammary

Model description

Modelling Stratege

Coupling multiple FEMs

Modelling strategy

Coupling FEM with electrical circuit: The idea is to present the HTS component as a global voltage parameter.

Modelling Stratege

Segregated H formulation

1st-step External field calculation # 2nd-step Induced field calculation

Modelling HTS coil

T-A homogenization

Modelling HTS coil

Coupling the T-A homogenization with electrical circuit

Motivation

- Model Description
- Test Case
- Results and Discussion
- Summary and future work

Test case

Superconducting layers considered only, and is simulated by E-J power law.

Parameters	Value
h [mm]	12
w [mm]	6
B _m [T]	1.25
R _{rotor} [mm]	35
a [um]	1
b [mm]	12
Airgap [mm]	3.7
Freq [Hz]	50
R _{inner} [cm]	5
R _{outer} [cm]	10
Number of turns	50*2
W _{tape} [mm]	4

Motivation

- Model Description
- Test Case
- Results and Discussion
- Summary and future work

Calculation results

Transport current

Magnetic field of Stator

Current penetration of coil

Calculation results

Losses and voltages of the 49 and 50 cycles

Calculation results

Firstly charge the HTS coil to some level, and then open the flux pump to simulate the dynamic charging process in different stages.

Motivation

- Model Description
- Test Case
- Results and Discussion
- Summary and future work

Summary and future work

- A model for simulating the dynamic charging process of HTS coil by flux pump was developed.
- This model realizes the coupling of multiple FEMs, enables the simulation of complex systems involving various HTS components.
- Computation time is too long, while a small HTS coil is considered, and also the stability problem caused by the flux pump model, especially when the magnet approaches the HTS stator.
- A model which could consider the current degradation of closed-loop HTS coil is needed.

Thanks!

Pengbo.zhou@kit.edu