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HTS (dynamo) flux pump – some references



HTS dynamo flux pump technology - status and applications 

• HTS (dynamo) Flux pump enables the contactless 
energization and current maintainment (resistive voltage 
drop compensation) of superconducting magnets system
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• A DC voltage is produced at the terminals of a dynamo flux pump device, in which a superconducting tape is exposed to a 
travelling magnetic field produced by a permanent magnet (or more) that cyclically passes on it. 

• This counterintuitive and widely debated effect has been widely confirmed by experiments.

Jiang, Z., Bumby, C.W.,
Badcock, R.A., (...),
Long, N.J., Amemiya,
N., Impact of flux gap
upon dynamic
resistance of a rotating
HTS flux pump, 2015,
SUST, 28(11)

O Tuvdensuren, H J Sung, B S Go, T T Le, M Park and I K Yu, Structural design and 
heat load analysis of a flux pump-based HTS module coil for a large-scale wind 
power generator, Journal of Physics: Conference Series, Volume 1054, (ISS2017)

Average (DC) voltage

Plateau current



The case study
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The considered flux pump 
consists of a 12 mm width HTS 
wire exposed to a rotating PM

An external two-terminal 
component (or load) is connected 
to the terminals of the HTS wire

The generator convention is assumed 
for the flux pump: P = V I

Absorbed by the FP

Absorbed by the FP Delivered by the FP

Delivered by the FP

I

V
Lext

Rext

V

II = 0 
open circuit 
operation of 
the FP

Simulated operating conditions:

Current driven (ideal current source) RL load

Lext = 0 
Rext = 0 
short circuit 
operation of 
the FP

load/motor

generator load/motor

generator
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Same geometry and data as in M. Ainslie, et al. «A new benchmark problem for electromagnetic modelling of superconductors: the
high-Tc superconducting dynamo,» Superconductor Science and Technology, August 2020.

• A constant critical current density Jc, independent of the magnetic field B, is considered ([14], [19])

• The dependence of Jc on B may significantly improve the performance of the flux pump, though leaving the 
general trends and findings unchanged ([13], [15], [18], [20])
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The FEM model of the FP based on the Volume Integral Equations (VIE) approach
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• Ends effects are neglected - 2D Cartesian approximation is exploited 

• The HTS layer is divided in a finite number of rectangular elements. 
The effect of substrate and shunt materials the tape are neglected

• The E-J power law is assumed for modeling the superconductor
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A. Morandi, «2D electromagnetic modelling of superconductors, 2012, SUST, Volume 25(10)

A. Morandi and M. Fabbri, «A unified approach to the power law and the critical state
modeling of superconductors in 2D», 2015, SUST 28(2)

• The usual weighted residual approach is used for obtaining the finite dimensional solution:
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Finite element based equivalent circuit of the flux pump

(a) connected to a current source (b) connected to an RL load
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Energy Balance
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Numerical results / electromotive force (𝒗 × 𝑩PM) in one cycle

PM− r B

• electromotive force 𝒗 × 𝑩PM has zero average at all 
points and reaches about 150 mV peak at the middle of 
the tape

• term 𝒗 × 𝑩PM is coincident with Τ𝜕𝑨PM 𝜕𝑡 evaluated via 
numerical derivative

At the mid 
of the tape

At the mid 
of the tape
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Numerical results / Terminal voltage of the FP at various impressed DC currents

• At all impressed currents, the terminal voltage is comprised between 
the min. and max. emf at any instant

• The voltage has non-zero DC component in one cycle, as a result of the 
distributed emf combined with the non-linear resistivity of the HTS

• The DC voltage can be positive or negative depending on the DC 
current. A monotone decrease of the voltage with increasing current is 
observed at all instants. As a result, a monotone decrease of the DC 
voltage with the impressed current is obtained
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Numerical results / Effect of rotation and Vdc-Idc characteristic of the flux pump 

The effects of the rotation are:

• Shifting the VI curve into the first quadrant allowing power generation

• Increasing the power to be supplied for impressing a DC current out of 
the generation mode (power must be supplied which is converted, 
along with th mechanical one, in AC loss into the tape)

• The maximum current I0 (34.2 A) for which power generation 
is possible is much lower than the critical current Ic of the tape 
(283 A). 

• Supplying power to a load requiring a current greater than I0

is not possible. For fixed air gap and angular velocity, I0 is an 
intrinsic parameter of the flux pump and does not depend on 
the load connects to it. 
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Numerical results / Energy balance

Energy terms of the flux pump during ten cycles for different DC current

• Monotone trends (unidirectional transfer) are 
observed for mechanical energy, dissipated 
energy and energy exchanged with the 
external component

• Mechanical energy is always positive. No 
energy can be extracted from the rotor (motor 
behavior). 

• The energy transferred to the external 
components can be both positive or negative 
(generator or the dissipative mode), 
depending on the DC current. In dissipative 
mode the energy absorbed by the external 
component is converted,  along with the 
mechanical energy of the rotor, into heat

• Energy exchanged with the external 
component is much lower than the dissipation
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Average power in one cycle for different values of the DC impressed 

current and corresponding efficiency

• A positive average power is delivered to the
external component in the range [0 – I0].

• The mechanical power is always positive. The flux
pump only never acts in the motor mode.

• Only a small part of the mechanical power is
transferred to the external load. This is due to the
inherent dissipation associated with the induced
current, responsible for the DC voltage, occurring
also in no load conditions.

• As a result, a maximum efficiency of 0.39% is
reached at 17.1 A (I0 /2).

It must be reminded that accounting for the 
dependence of Jc on the B field improveds the 
absolute performance f the FP, while leaving all 
presnete conclusion and tresnds uncehanged. 
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( , ) ( ,0) ( , )V t I V t R t I I= −

• A monotone decrease of the voltage with increasing current 
is observed at all instants 

• A linear decrease, confirmed in experiments,  of the average terminal voltage on the operating current in the interval 
 100 A

Partial and complete empirical equivalent circuits

Linear region

0
effective

0

,   independent on 
V

R I
I

=
effective 1.73R = 

average 0 effective( ) ( )V I V R I I= − I
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• We assume that, provided that the current I is in the linear interval 100 A, the constant effective resistance 
Reffective determines the difference between the instantaneous terminal voltage and the no load voltage 

( , ) ( ,0) ( , )V t I V t R t I I= −

effective( , ) ( ,0)V t I V t R I= −

• Replacing R(t,I) with a constant Reffective is a merely heuristic assumption, validated by comparison with FEM results

partial empirical equivalent circuit of the flux pump
A TIME DEPENDENT CIRCUIT ALLOWING TRANSIENT  SIMULATIONS

• It is pointed out that the equivalent circuit is supplied by the time dependent open circuit voltage V(t,0) and not by 

the open circuit voltage Vaverage as it is usually assumed
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• The partial equivalent  circuit is not able to reproduce the dissipation that occurs in case of open circuit operation

• An intrinsic resistance must be added to take this dissipation into account

2
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• The Thevenin equivalent of the complete empirical equivalent circuit coincides with the partial one (they are 
distinguishable from the external load )

complete empirical equivalent circuit of the flux pump
A TIME DEPENDENT CIRCUIT ALLOWING TRANSIENT  SIMULATIONS 

AND TAKING LOSS INTO ACCOUNT

• Both the partial and complete empirical equivalent circuits can be equivalently used for time domain analysis, 
provided that the linear limit is not exceeded. The complete equivalent circuit must be used for taking the loss 
into account. 



RL load charging transient calculated by means of the equivalent circuit

• The current ripple during the 
whole charging is accurately 
calculated by means of the 
equivalent circuit

• The flux pump is completely 
characterized by means of:

➢ V(t,0)
➢ Reffective

➢ Rintrinsic

• Once these parameters are 
defined any simulation can be 
accomplished provided that the 
linear limit is not is not exceeded



Terminology: “short circuit operation” versus “current producing zero average voltage at the terminals”

• The short circuit current is 
beyond the linear limit and 
cannot be calculated by 
means of the equivalent 
circuit. The FEM model is 
needed. 

“ short circuit current “, 
corresponding to zero 
average voltage

34.2 A

225.9 A

true “short circuit 
current “
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Energy behavior: Average power in a cycle for different values of DC current and corresponding efficiency

2 2

source(partial) 0 effective terminals effective

2 2

rms0 rms02 2

source(complete) 0 effective terminals effective joule0

intrinsic intrinsic
overall joule dissipation
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P P

P P R I P
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• In agreement with experiment, the 
calculated  average power in one cycle 
at the terminals follows a parabolic 
dependence and is maximum at  I=I0/2. 

• Efficiency too is maximum at I=I0/2. 
Flux pump should be designed to 
operate at this rated current

• A drastic increase of efficiency is 
obtained if the dependence of Jc on B 

is considered. 
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Findings and conclusion

• In dynamo FP a significant part of the supplied mechanical power is inherently converted 

in heat due to overcritical currents induced to produce the DC voltage.

• The generator mode can only be achieved in a restricted range of current, independent 

on the load. In no conditions the FP can operate in motor mode. 

• Maximum power transfer and efficiency are reached at the middle of the intrinsic 

generator range (I0/2)

• An intrinsic resistance must be added to the equivalent circuit to take loss into account

• The equivalent circuit can be used for time domain simulations of any type, provided that 

the current is in the linear limit

antonio.morandi@unibo.it
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