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Magnetic Shield
The magnetic shield is made up of a stack of tape annuli.
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Inner radius: 13 mm. Outer radius: 22.5 mm. Height: 14.9 mm.

I Number of tapes: N = 183. One tape:
HTS layer + ferromagnetic (FM) substrate.

I Filling factor of the FM: f = 0.92.

I Temperature: 77K.

S. Hahn, 2011. A. Patel, 2016.
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Shielding Factor (SF)
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Experimental measurements (77K)
‖bs,max‖ = 60 mT, ‖ḃs‖ = 0.75 mT/s.
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‖bs,max‖ = 670 mT, ‖ḃs‖ = 5 mT/s.
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[See S. Brialmont’s presentation tomorrow at 4:30 pm.]
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Magneto-Quasistatic Equations

div b = 0, curl h = j, curl e = −∂tb

I HTS layer: µ0, power law + Kim’s model

ρ(j) =
ec

jc(b)

(
‖j‖

jc(b)

)n−1

with jc(b) =
jc0

1 + ‖b‖/b0
,

and n, jc0 and b0 to be fixed (see later).

I FM substrate: µr(b) from measurements at 77K, σ = 0.
[See S. Brialmont’s presentation tomorrow at 4:30 pm.]
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Two Models

Modelling N = 183 tapes is very expensive.

We propose two simplified models:
1. Simple model: N1 < N layers.

I h-φ-b-formulation.
2. Homogeneous model: hybrid anisotropic material.

I h-φ-formulation.
I Accurate results with reasonable mesh resolution.

We run simulations in axial (2D-axi) and transverse (3D) cases.
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Simple Model (1/2): h-φ-formulation

Find h in the chosen function space (h-φ) such that, ∀h′,

(
∂t(µh) ,h′

)
Ω

+
(
ρ curl h , curl h′

)
Ωc

+

N1∑
i=1

ViIi(h′) = 0.

I Ωc ⇒ conducting domain (HTS).
I Edge functions (h) in Ωc,

curl-free functions (grad φ) in ΩC
c .

I Vi = 0, ∀i⇒ no applied voltage
(weak constraint).

I Ii is the net current in tape i
(not imposed).

I Cohomology functions are used.
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Simple Model (2/2): another formulation
In the h-φ-formulation, dealing with µ is not always robust. The
nonlinearity is best solved as ν = µ−1.

h-φ-a-formulation ?

I h-φ in Ωc, a in ΩC
c and surface coupling.

I Large coupling surface⇒ not optimal.

h-φ-b-formulation
I h-φ in Ω and auxiliary b field in Ωm (FM domain).

Volume coupling in Ωm:(
∂tb ,h′

)
Ωm

+
(
µ0∂th ,h′

)
ΩC

m
+
(
ρ curl h , curl h′

)
Ωc

= 0(
νb , b′

)
Ωm
−
(
h , b′

)
Ωm

= 0

I If Ωm is non-conducting, inf-sup condition satisfied with
piecewise constant elements for b.

I Much more robust than h-φ-formulation.
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Homogeneous Model: Anisotropy

Replace the detailed stack by one homogeneous material.

x
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I Introduce the average h and j fields.
I Introduce anisotropic ρ̃( j) and µ̃(h) tensors.
I Solve the h-φ-formulation:(

∂t(µ̃h) ,h′
)

Ω
+
(
ρ̃ curl h , curl h′

)
Ωc

+ V0I0(h′) = 0

with V0 = 0.
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Homogeneous Model: Permeability
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I Filling factor of FM: f .
I Field in the FM (implicit equation):

hF =

hF
x

hF
y

hF
z

 =

 hx

hy

µ0hz/
(
fµ0 + (1− f )µ(hF)

)


I Permeability tensor:

µ̃(hF) =


fµ(hF) + (1− f )µ0 0 0

0 fµ(hF) + (1− f )µ0 0

0 0
1

f/µ(hF) + (1− f )/µ0


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Homogeneous Model: Resistivity

x
y z

I Filling factor of HTS: 1− f .
I Current in HTS: jS = j/(1− f ).
I Resistivity tensor, with ρ∞ as large as possible (0.01 Ωm):

ρ̃( jS) =

ρ( jS) 0 0
0 ρ( jS) 0
0 0 ρ∞


with jc = jc(bS) (field in the HTS, not the average field).
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Axial Case (2D-axi): model fit and verification
Good agreement with n = 20, jc0 = 7.5× 109 A/m2, b0 = 0.1 T.
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I Models converge towards the same solution with
mesh refinement.

I The influence of N1 is limited as soon as N1 & 8.
I All are sensitive to mesh resolution at low fields.
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Axial Case (2D-axi) at Low Fields
Homogeneous model at low fields. Different mesh resolutions.
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Same observation for the simple model.

Current density.

jθ0 jc0

bs = 40 mT.
Medium mesh.
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Transverse Case (3D)

Solution at ‖bs‖ = 30 mT. Simple model with structured mesh.
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Transverse Case (3D)
Same observations, but the simple model is more expensive. bs
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I At fine meshes, models are equivalent.
I The homogeneous model gives better results quicker.
I CPU time: simple ≈ 30 min .
I CPU time: homogeneous ≈ 10− 15 min .
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Conclusion and Further Works

Conclusions:

I Both models give good agreement with measurements.

I For the simple model, the h-φ-b-formulation is a robust option.

I The homogeneous model can be twice faster in 3D.

Future investigations:

I How to adapt the h-φ-b-formulation to conducting domains ?

I More clever simple model discretization?

I Do quadratic elements improve the model performance?

I How does a thin shell model compare to these models?
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Appendix

h-φ-a-formulation

I h-φ-formulation in Ωc, a-formulation in ΩC
c and coupling via

common surface Γm:(
∂t(µh) ,h′

)
Ωc

+
(
ρ curl h , curl h′

)
Ωc

+
〈
∂ta× nΩc ,h

′〉
Γm

= 0(
ν curl a , curl a′

)
ΩC

c
−
〈

h× nΩC
c
, a′
〉

Γm
= 0

I For stability, second-order functions for a on Γm.
I Important coupling surface⇒ not optimal.
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