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Magnetic Shield

The magnetic shield is made up of a stack of tape annuli.

» Number of tapes: N = 183. One tape:
HTS layer 4 ferromagnetic (FM) substrate.

» Filling factor of the FM: f = 0.92.

! » Temperature: 77K.
S. Hahn, 2011. A. Patel, 2016.
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Experimental measurements (77K)

[Bsmax|| = 60 mT, [|bs|| = 0.75 mT/s. [Bsmax|| = 670 mT, ||bs|| = 5 mT/s.
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[See S. Brialmont’s presentation tomorrow at 4:30 pm.]
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Magneto-Quasistatic Equations

‘divb =0, curlh=j, curle= —th‘

» HTS layer: uo, power law + Kim’s model

e (WY e
o0 = 50 (ub)) With Je®) = T el /6y

and n, joo and bg to be fixed (see later).

» FM substrate: p(b) from measurements at 77K, o = 0.
[See S. Brialmont's presentation tomorrow at 4:30 pm.]
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Two Models

Modelling N = 183 tapes is very expensive.

We propose two simplified models:
1. Simple model: N; < N layers.
» h-¢-b-formulation.
2. Homogeneous model: hybrid anisotropic material.

» h-¢-formulation.
» Accurate results with reasonable mesh resolution.

We run simulations in axial (2D-axi) and transverse (3D) cases.
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Simple Model (1/2): h-¢-formulation

Find k in the chosen function space (h-¢) such that, VA’,

(O(puh) '), + (peurl b, curl B')

» Q. = conducting domain (HTS).

» Edge functions (k) in .,
curl-free functions (grad ¢) in QF.

» V; =0, Vi= no applied voltage
(weak constraint).

> 7 is the net current in tape i
(not imposed).

» Cohomology functions are used.
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Simple Model (2/2): another formulation

In the h-¢-formulation, dealing with 1. is not always robust. The

nonlinearity is best solved as v = ;1.

’ h-¢-a-formulation ‘ ?

> h-¢in Q, a in QS and surface coupling.
» Large coupling surface = not optimal.

h-¢-b-formulation ‘

> h-¢ in Q and auxiliary b field in ;,, (FM domain).
Volume coupling in Q,:

(b ’h/)Qm + (po0:h ,h’)Qg + (pcurl h , curl h’)Qc =0
(vb ,b/)gm — (h b, =0

» If O, is non-conducting, inf-sup condition satisfied with
piecewise constant elements for b.

» Much more robust than A-¢-formulation.
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Homogeneous Model: Anisotropy

Replace the detailed stack by one homogeneous material.

» Introduce the average h andj fields.
» Introduce anisotropic p(j) and (k) tensors.
» Solve the h-¢-formulation:

(O(h) k'), + (peurl b curl '), + VoZo(h') =0

with Vo = 0.
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Homogeneous Model: Permeability
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» Filling factor of FM: f.
» Field in the FM (implicit equation):

n hy
G
e pohz/ (Fro + (1 — f)u(h"))

» Permeability tensor:

Fuh™) + (1= fpo 0 0
[L(hF) _ 0 fﬂ(hF) + (1 = f)uo 0
0 0 !

f/u(h") + (1 =)/ o
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Homogeneous Model: Resistivity
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» Filling factor of HTS: 1 —f.
» Currentin HTS: j5 =j/(1 — f).
> Resistivity tensor, with p, as large as possible (0.01 2m):

)0 0
0 o O )
0 0

Poo

with j. = j.(b%) (field in the HTS, not the average field).

10/17



Axial Case (2D-axi): model fit and verification
Good agreement with n = 20, joo = 7.5 x 10° A/m?, by = 0.1 T.
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» Models converge towards the same solution with
mesh refinement. b\}
» The influence of N; is limited as soon as N; = 8.

» All are sensitive to mesh resolution at low fields.
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Axial Case (2D-axi) at Low Fields
Homogeneous model at low fields. Different mesh resolutions.

Current density.
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b, = 40 mT.
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Same observation for the simple model.
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Transverse Case (3D)

Solution at ||bs|| = 30 mT. Simple model with structured mesh.
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Transverse Case (3D)
Same observations, but the simple model is more expensive. 2
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> At fine meshes, models are equivalent.

» The homogeneous model gives better results quicker.
» CPU time: simple ~ 30 min .

» CPU time: homogeneous ~ 10 — 15 min .
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Conclusion and Further Works

Conclusions:
» Both models give good agreement with measurements.
» For the simple model, the /-¢-b-formulation is a robust option.

» The homogeneous model can be twice faster in 3D.

Future investigations:
» How to adapt the /-¢-b-formulation to conducting domains ?
» More clever simple model discretization?
» Do quadratic elements improve the model performance?
>

How does a thin shell model compare to these models?
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References
> GetDP, Gmsh.

> Life-HTS website: http://www.life-hts.uliege.be/

Life-HTS

Liége university Finite Element models for High-Temperature Superconductors

This project files for (HTS) with GetDP as a
finite element solver and Gmsh as mesh generator.

Files are available here.

Several inite element together with

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

d for | app (bulk and tapes HTS, coupling with ferromagnets...
These models are developed at the University of Lidge.
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Appendix

’ h-¢-a-formulation ‘

> h-¢-formulation in Q., a-formulation in Q¢ and coupling via
common surface I',:

(Or(uh) '), + (peurl b curl b'), +(da x no, ,h'). =0

(veurla ,curld’) . — <h X g ,a’> =0

m

» For stability, second-order functions for a on I'y,,.
» Important coupling surface = not optimal.

1717



