

Thermomagnetic-instability-induced mechanical response in fully magnetized high-temperature superconducting bulk during pulse-field magnetization.

Juntong Hu¹, Wenjiang Yang¹, Xiaodong Li²

1, Beihang University, China

2, Technical University of Munich, Germany

contents

introduction

Flux jump in PFM technique

Technische Universität München

Research on the mechanical stability during PFM

PFM Technische Universität München

Report

Research on the mechanical stability during PFM

Author	Sample	Method	Time	respect
Mochizuki	GdBCO bulk	2D Coupled H	2016	coupled thermomagnetic- mechanical instability behavior
Wu	GdBCO bulk	2D Coupled H	2018	
Zhang	MgB2 bulk	2D coupled H	2020	
Hirano	Ring bulks	2D Coupled H	2021	
Shinden	Ring bulks	3D Coupled H	2022	
Ru	GdBCO bulk	2D PD theory	2019	fracture/damage problem
Jing	GdBCO bulk	2D Phase-field theory	2020	
Jing	MgB2 bulk	2D Phase-field theory	2022	

the stronger flux pinning (Jc characteristic) is, the severer the mechanical stability is

the stronger flux pinning (Jc characteristic) is, the flux jump is prone to occur

Analysis of electromagnetic characteristics of high performance HTS bulk during flux jump

Obtain the stress distribution of fully magnetized HTS bulk

Analysis of the key failure factor thermal stress in the magnetized process

• Numerical model

Model setting of magnetic field

Technische Universität München

Two-variable interpolation Jc characteristic

Model setting of Multiphysics

Technische Universität München

Report

10

• Numerical result

Magnetic distribution after fully magnetized

Technische Universität München

before flux jump

▲ 1.39

▲ 1.4

1.2

1

0.8 0.6

0.4

0.2 0

-0.2

▼ -0.33 J_{ω}/J_{c} distribution

After flux jump, the current is redistributed, and there is no positive current at the center

Temperature evolution and distribution

Technische Universität München

The final trapped field 4.6T has good agreement with the experiment 4.4T, but there is a concave in the position 2.5mm

Temperature change during flux jump

TIT A

Technische Universität München

0mm magnetic time evolution

with the temperature attach to the peak, the screen current induced by Jc reduced immediately, resulting in the flux jump

Lorentz force load

Technische Universität München

Maximum Lorentz force evolution

Thermal Stress distribution after fully magnetized

Technische Universität München

Maximum thermal stress time evolution

 σ_r

 σ_{ϕ}

Spatial distribution of thermal stress during flux jump

Technische Universität München

Spatial distribution of stress during flux jump

Technische Universität München

Report

Thermal σ_{ϕ} Spatial distribution

Spatial distribution of electromagnetic stress during flux jump

Conclusion

After flux jump, the electromagnetic and thermal parameters will change rapidly and help the bulk to be fully magnetized

After flux jump, the stress will redistribute to propagate outward, result in local stress concentration

The total stress in fully magnetized bulk trapped 4.8T is close to the mechanical strength, which is the obstacle to further improve the trapped field

THANK YOU

