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Introduction

In the context of magnetic shielding:

* High-permeability ferromagnetic materials saturate at B=1T
e Bulk superconductors can act as very efficient shields
* Persistent current loops generated by the applied field
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Introduction

In the context of magnetic shielding:

* High-permeability ferromagnetic materials saturate at B=1T
e Bulk superconductors can act as very efficient shields
* Persistent current loops generated by the applied field

B In principle, possibility to shield a quasi-DC
flux density B >> 1 T with superconducting
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Introduction

Possibility to use a stack of coated conductors (CC)
annuli of large width as a cylindrical shield

The shielding performances can be improved by using a
ferromagnetic substrate




Introduction

e Possibility to use a stack of coated conductors (CC)
annuli of large width as a cylindrical shield

* The shielding performances can be improved by using a
ferromagnetic substrate

Purpose of this work :

Investigate the magnetic shielding properties of such a stack
Investigate the role played by the ferromagnetic substrate

 Measurements of
1. The magnetic properties of the CC ferromagnetic substrate
2. The shielding performances of a stack of large CC annuli
 Comparison of experimental results with numerical simulations



1.

Magnetic properties of the Coated Conductors
(CC) ferromagnetic substrate



Experimental set-up and measurement method

Stack of 294 CC annuli dug in 46 mm wide tapes

R, =22.5mm
R, =13 mm ‘
h =24 mm

* Stack of 294 coated conductors
 American Superconductor (RE)BCO tape
e 75 um thick Ni5W substrate

S. Hahn et al., IEEE Trans. Appl. Supercond., 22, 4302204 (2012)
A. Patel et al., Supercond. Sci. Technol., 30, 024007 (2017)



Experimental set-up and measurement method

Stack of 294 CC annuli dug in 46 mm wide tapes

out =22.5mm
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i Ri, =13 mm ‘
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Advantages of this sample:

* Stack of 294 coated conductors * Closed magnetic circuit

* American Superconductor (RE)BCO tape * No demagnetizing effect

e 75 um thick Ni5W substrate e Best configuration to measure magnetic
properties

S. Hahn et al., IEEE Trans. Appl. Supercond., 22, 4302204 (2012)
A. Patel et al., Supercond. Sci. Technol., 30, 024007 (2017)
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Measurement coils :
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Measurement coils :

Secondary winding

* B measurement

* Small section wire

* Ns=433turns

* Wound as close as
possible from the tapes




Experimental set-up and measurement method

Measurement coils :

Secondary winding Primary winding

* B measurement  Sample Magnetization

* Small section wire (H field)

* Ns=433turns * Large section wire

* Wound as close as * Np=368turns
possible from the tapes




Measurement results

e Hysteretic cycles measured
in low frequency AC (30 Hz)

 Temperatures investigated :
room temperature (293 K)
and 77 K

* Measurements at different
frequencies show that eddy
current losses are negligible

2000 -1000 O 1000 2000
H [A/m]



Measurement results

First magnetization curve
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Measurement results

First magnetization curve
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Results can be inserted in numerical models simulating
the HTS/Ferromagnetic material coupling




2.

Magnetic shielding performance of the stack
of CC annuli



Experimental set-up and measurement method

Shielding performance measured on two different aspect ratios : A and B

D
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Sample A * Sample used for Sample B
* [nitial sample magnetic property e Second sample
e h=24mm measurement e h=15mm
* h=9mm




Experimental set-up and measurement method

* Measurement of the flux density inside the samples at the centre of the stack B,
 Measurement under axial and transverse configurations
« Measurement at room temperature and at 77 K

Shielding factor:

-
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SF = ~er

Bin




Experimental results at room temperature

Sample A (h = 24 mm)

* Existence of SF > 1 for both orientations
* Transverse SF strongly field dependent
e Axial SF almost field independent (= 2)

0 10 20 30 40 50 60
Bepp = pioHopp [mT]

11



Experimental results at room temperature

Sample A (h = 24 mm)

10° = SF | 42 ' fr  Taking into account a filling factor of the
i | ) B i ferromagnetic material f=0.92
N\ : —— = Uy = fI =
= | NI — Buw AN (SN CEY)
e ] ST T B T, DN
&' R — — * Using formulas for ferromagnetic shields,
N and an ‘average’ u- = 300, analytical
' \\:\ ; e — formulas (Mager 1970) for ferromagnetic
,\H T s shields give
0 E 5 i : ~
19% 10 20 30 40 50 60 [SFtrans ~ 24'6j [SFaxial =2.7 j
Bopp = pioHopp [mT]
SF ~2.4 |

Mager, IEEE Trans. Magn. 6 (1970) 67
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Experimental results at room temperature

Sample B (h =15 mm)
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* Similar properties but smaller shielding

factor for both orientations

13



Experimental results at 77 K

Sample A (h = 24 mm)

* Transverse SF strongly field dependent
* Axial SF almost field independent (~ 40)
and much higher than at 300 K

* The ferromagnetic layer gives rise to a
significant transverse shielding (= 20),
in spite of the layered structure

0 10 20 30 40 50 60
Bapp = ,UJOH app [mT]
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Experimental results at 77 K

Sample A (h = 24 mm)

* Transverse SF strongly field dependent
* Axial SF almost field independent (~ 40)
and much higher than at 300 K

* The ferromagnetic layer gives rise to a
significant transverse shielding (= 20),
in spite of the layered structure
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Bapp = ,UJOH app [mT]
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SF [-]

Experimental results at 77 K

Sample B (h =15 mm)
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Bopp = poHapp [mT]

* Similar properties but smaller shielding
factor for both orientations

15



Numerical modelling

* Homogeneous model with both superconducting and ferromagnetic properties solved with an
h-¢@ formulation

16



Numerical modelling

* Homogeneous model with both superconducting and ferromagnetic properties solved with an
h-¢@ formulation

Axial shielding
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Numerical modelling

* Homogeneous model with both superconducting and ferromagnetic properties solved with an
h-¢@ formulation

Axial shielding

2D-axisymmetric o ----- -1 ]Bapp

3D

Bapp
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Numerical modelling

Model parameters

VO lFerro

Filling factor f=0.92 : ratio leadingto js = j/(1 — f)

VOlHTS

Anisotropic resistivity p(js): highest possible value for the z-component (p, = 0.01 Qm)

Anisotropic permeability p(B) taking into account the experimental measurements

1
Field dependence of the critical current: j.(B) = 1.6 x 108 (1 + %)

Finite element solver GetDP

“Life-hts: Liege university finite element models for high-
temperature superconductors,” www.life-hts.uliege.

17



Experimental vs. numerical results at room T

Sample A (h = 24 mm)
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Nice agreement for both aspect ratios
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Experimental vs. numerical results at 77 K

Sample A (h = 24 mm) Sample B (h =15 mm)
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Nice agreement for both aspect ratios




Experimental vs. numerical results at 77 K

* Measurements up to 670 mT
* Axial shielding for sample B

e Still good agreement with modelling

- -Modelling
—EXperiments

0 100 200 300 400 500 600 700
Applied induction By, = poH,p, mT]




Experimental vs. numerical results at 77 K

- -Modelling
—EXperiments

0 100 200 300 400 500 600 700
Applied induction By, = poH,p, mT]

* Measurements up to 670 mT
* Axial shielding for sample B

e Still good agreement with modelling
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Experimental vs. numerical results at 77 K

- -Modelling
—EXxperiments

0 100 200 300 400 500 600 700
Applied induction By, = poH,p, mT]

* Measurements up to 670 mT
* Axial shielding for sample B

e Still good agreement with modelling

A A R . - S , \ Sample fully

penetrated
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Experimental vs. numerical results at 77 K

* Influence of HTS in transverse shielding (what if J. =0 ?)

21



Experimental vs. numerical results at 77 K

SF [-]

* Influence of HTS in transverse shielding (what if J. =0 ?)

Transverse
—---;/-— ----------- F-—-—------ f-rr=====cl=====- ===
g meghy |- ~Modelling with J  # O
\“{\ e -Modelling withd =0 |,
e : : &
\ \ : " |—Experiments

 Low influence of HTS on the
transverse SF

 Due to the aspect ratio of the
HTS layer in tapes

0 10 20 30 40 50 60
Bapp — ,UJOHa.pp [mT]



Experimental vs. numerical results at 77 K

* Influence of ferromagnetic material (FM) in axial shielding (what if u, =1 ?)

22



Experimental vs. numerical results at 77 K

SF [-]
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* Influence of ferromagnetic material (FM) in axial shielding (what if u, =1 ?)

Axial
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1 [ 1 1 \
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Applied induction B,,, = poHgp, [mT]

* Presence of FM results in a
decreased SF

* Attraction of field lines by FM
— increased field penetration

0 100 200 300 400 500 600 700
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Conclusions

Measured magnetic properties on Ni5W substrate can be inserted in numerical models
A finite SF is found at room T in both axial and transverse configurations
Magnetic shielding survives up to quasi-static field ~ 600 mT

Numerical simulations are found to be in good agreement for samples with different
aspect ratios at both 77 Kand room T

m) Models could simulate various geometries

Ferromagnetic layer in the scope of magnetic shielding with annuli ?

x Decreases the SF in axial shielding
v'Possibility to shield at T> T
v" Possibility to shield transverse fields (e.g. non-uniform stray field)



