High Temperature Superconductors and Their Applications

A summary of the current status...

Arno Godeke Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

What has been done before?

IOP Publishing Supercond. Sci. Technol. 32 (2019) 053001 (29pp)

Superconductor Science and Technology https://doi.org/10.1088/1361-6668/ab06a2

Topical Review

A review of commercial high temperature superconducting materials for large magnets: from wires and tapes to cables and conductors

D Uglietti

Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-5232 Villigen PSI, Switzerland

E-mail: davide.uglietti@psi.ch

High Temperature Superconductors for Commercial Magnets

Contemplations from a magnet perspective...

Arno Godeke - ICSM2021 Plenary - Milas-Bodrum, Turkey - Oct. 22, 2021

Topical Review

High Temperature Superconductors for Commercial Magnets

(In progress)

Arno Godeke Independent Consultant, 7557 XG Hengelo, The Netherlands E-mail: agodeke@icloud.com

29 May 2022

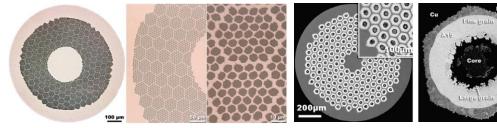
Abstract. The steadily increasing magnetic fields that can be generated with superconducting magnetic era casching the limiting of what is achieved with here and appropriate in this context.

Keywords: high temperature superconductor, magnet, Bi-2223, Bi-2212, REBCO

Submitted to: Supercond. Sci. Technol.

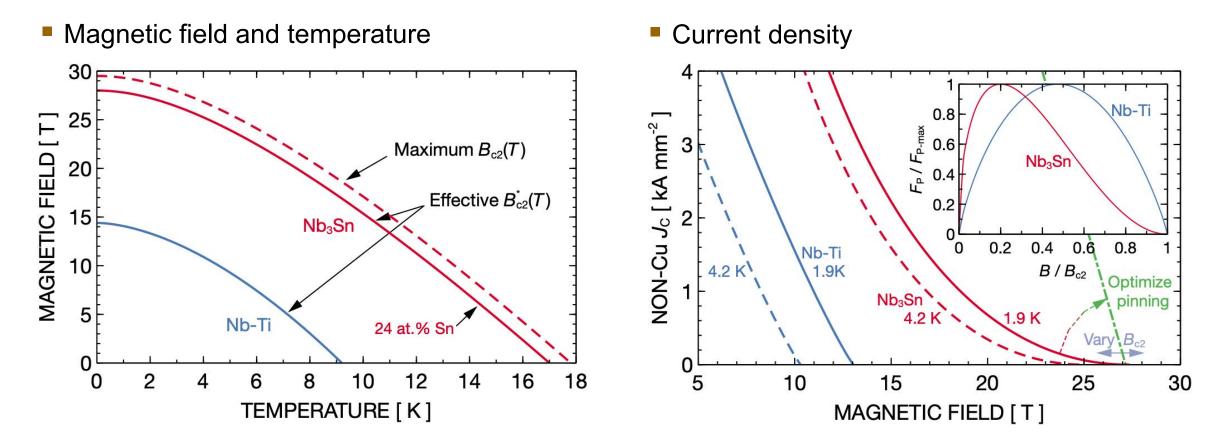
Agenda

- Low Temperature Superconductors
 - Why higher temperatures are cooler
- High Temperature Superconductors
 - Types, production, main properties, price


Applications

• Magnets, rotating machines, energy,...

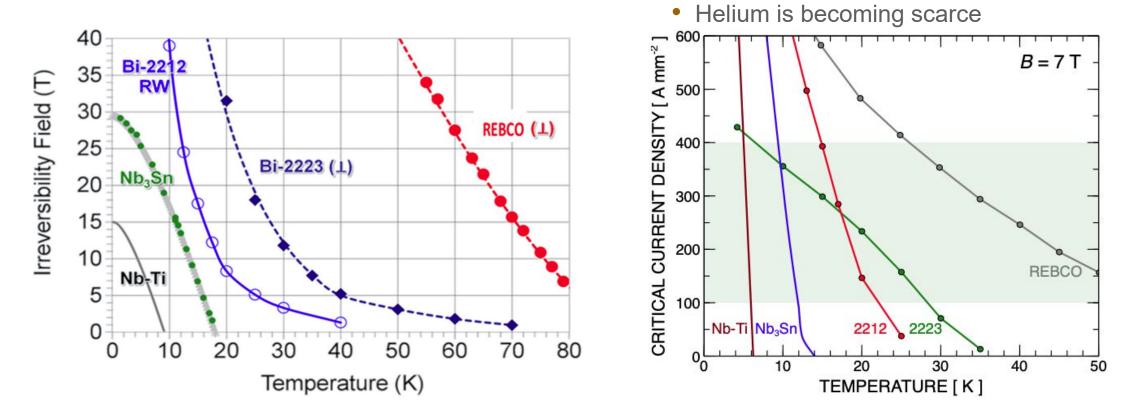
An outlook for HTS


Low Temperature Superconductors

Present performance boundaries

Nb-Ti Lee, in "100 years of Superconductivity" (2011)

Nb₃Sn Godeke, *Cryogenics* **48**, 308 (2008)



Godeke, *J. Appl. Phys.* **97**, 093909 (2005) Godeke, *IEEE Trans. Appl. Supercond.* **17**, 1149 (2007) Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

Why higher temperatures are cooler (1)

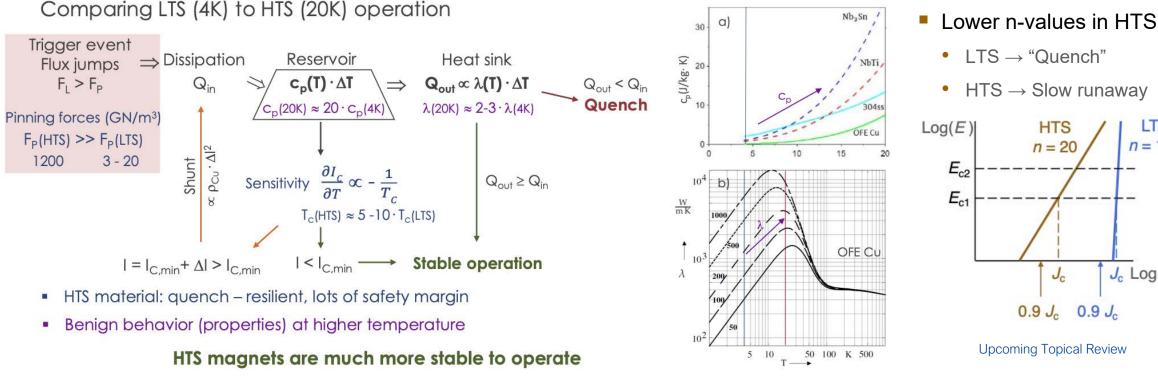
Increased performance boundaries with HTS

Higher magnetic fields are accessible

Usable at higher temperatures

Larbalestier, *Nat. Mat.* **13**, 375 (2014) Godeke, *Supercond. Sci. Technol.* **33**, 064001 (2020)

Gains in magnetic field and operating temperature


Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022 5

Why higher temperatures are cooler (2)

Magnet operation becomes easier

THEVA

QUENCH BEHAVIOR OF HTS MAGNETS

^{a)} T. Tabin, et al. Int. J. of Solids and Struct. 202.10.1016/j.ijsolstr. 2020.05.033 (2020)

^{b)} S. Russenschuck, 2011; https://doi.org/10.1002/9783527635467.app1

• LTS \rightarrow "Quench" $HTS \rightarrow Slow runaway$ LTS HTS Log(E)n = 20n = 100E_{c2} Ect $J_{c} Log(J)$ JC $0.9 J_{c}$ $0.9 J_{c}$ Upcoming Topical Review

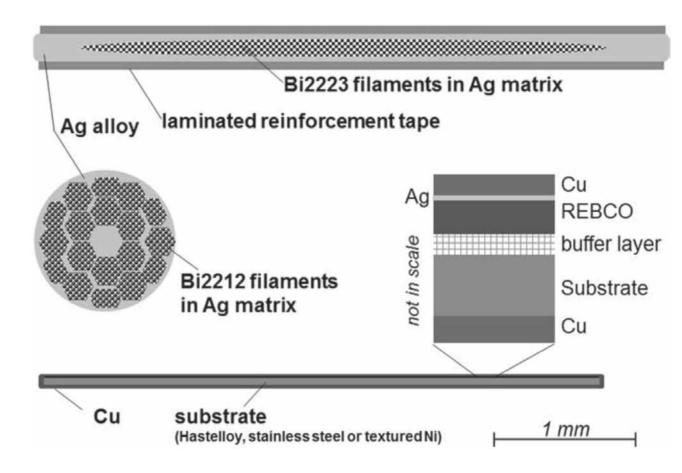
© THEVA Dünnschichttechnik GmbH 2021

Reproduced with permission from W. Prusseit, Virtual CCA conference, 14-10-2021

6

Agenda

- Low Temperature Superconductors
 - Why higher temperatures are cooler
- High Temperature Superconductors
 - Types, production, main properties, price


Applications

• Magnets, rotating machines, energy,...

An outlook for HTS

High Temperature Superconductors

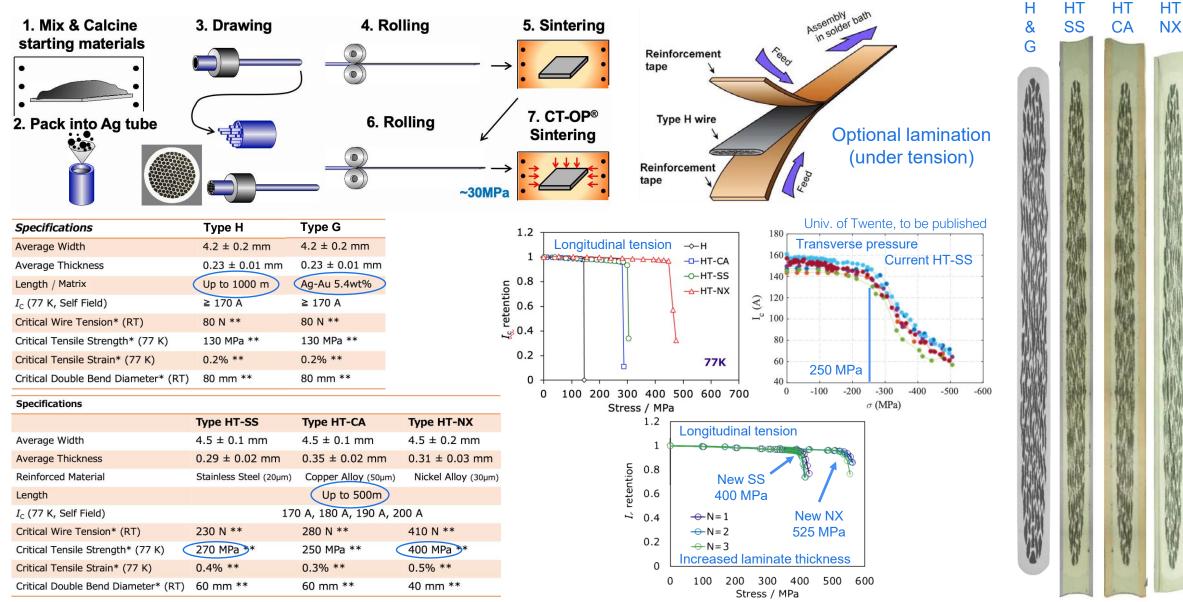
Three commercially available options

- Bi-2223 ([Bi-Pb]₂Sr₂Ca₂Cu₃O_x)
 - 1 (?) manufacturer
 - 4.2 or 4.5 mm wide, 0.23...0.35 mm thick tapes
 - Ag/Ag-alloy matrix with optional reinforcement
 - Multifilamentary, untwisted
 - Pre-reacted

Bi-2212 (Bi₂Sr₂Ca₁Cu₂O_x)

- 2+ (?) manufacturers
- Round and rectangular wires of various dimensions
- Ag/Ag-alloy matrix with optional reinforcement
- Multifilamentary, twisted or untwisted
- Wind & React or pre-reacted

REBCO ([RE]Ba₂Cu₃O_x)


- 10+ (?) manufacturers
- 2...40 mm wide, about 0.05...0.2 mm thick tapes
- High-strength substrate with variable Cu plating
- Single- or double REBCO layer
- Pre-reacted

Uglietti, Supercond. Sci. Technol. 32, 053001 (2019)

SUMITOMO ELECTRIC DI-BSEED

Type

Bi-2223 conductors

Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

Sumitomo Electric product flyer (2021) – Hayashi, 33rd ISS (2020) – Hayashi, 3rd Asian Supercond. Summer School (2018)

Bi-2223 cables

Large magnets need cables \rightarrow Limit L (\rightarrow V) and winding cost

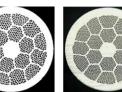
- Magnet cables
 - Dense \rightarrow High J_E
 - Mechanically stable
 - Transposed
 - Flexible
 - Scalable
- Bi-2223 \rightarrow Magnum NX[®] cable
 - Solid Material Solutions
 - Sumitomo HT-NX tape
 - 2 or more tapes bundled and wrapped
 - Wrapped bundles are cabled

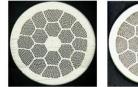
Saraco, Appl. Supercond. Conf. (2020) Otto, Low Temp. Supercond. Workshop (2022) Upcoming topical review

Bi-2212 conductors

Manufactured by Bruker-OST and by Solid Material Solutions

1.5 mm


- Powder-in-Tube process similar to Bi-2223
 - Reaction at 890 ± 1...5°C in O₂


1.0 mm

- \rightarrow Challenge for materials
- Highest J_c with overpressure reaction
 - 30...100 bar pressure for 3x 1 bar J_c

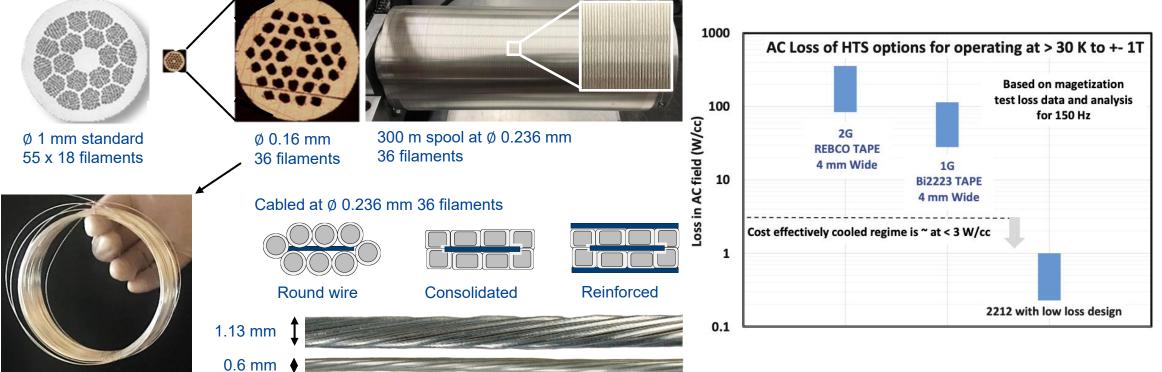
0.8 mm

1.2 mm

Arno Godeke -- High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

Novel designs

- With strengthening
 - Rectangular and round
- Cost reductions
- High J_c without overpressure

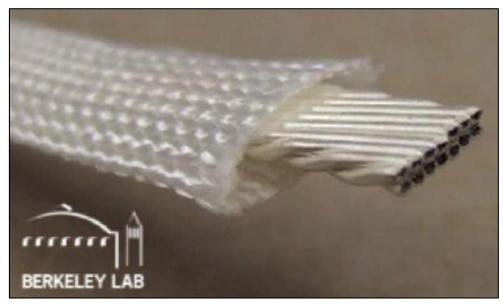


Bi-2212 wires for AC applications

Rotating machines, energy, and fast ramping magnets require low AC-loss

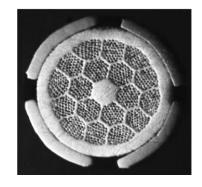
- Reduction of AC-losses using LTS experience
 - Small Ø filaments, Ø wire, and twist-pitch (loops) + resistivity
- Comparison of losses for B⊥ tapes
 - 2 orders of magnitude lower AC-loss

Otto, Low Temp. Supercond. Workshop (2022)


Low losses are key for cryogen-free: Power density gains can be cancelled by cooling needs

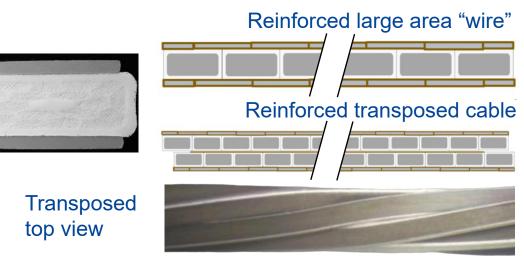
Bi-2212 cables

Easier to cable round and low-aspect ratio conductors


- Traditional Rutherford cables
 - For round Bi-2212 wires
 - With braided ceramic fiber insulation
 - Ag is soft after reaction heat-treatment

Godeke, LBNL, unpublished (2008)

Round reinforced cable (6 wires)

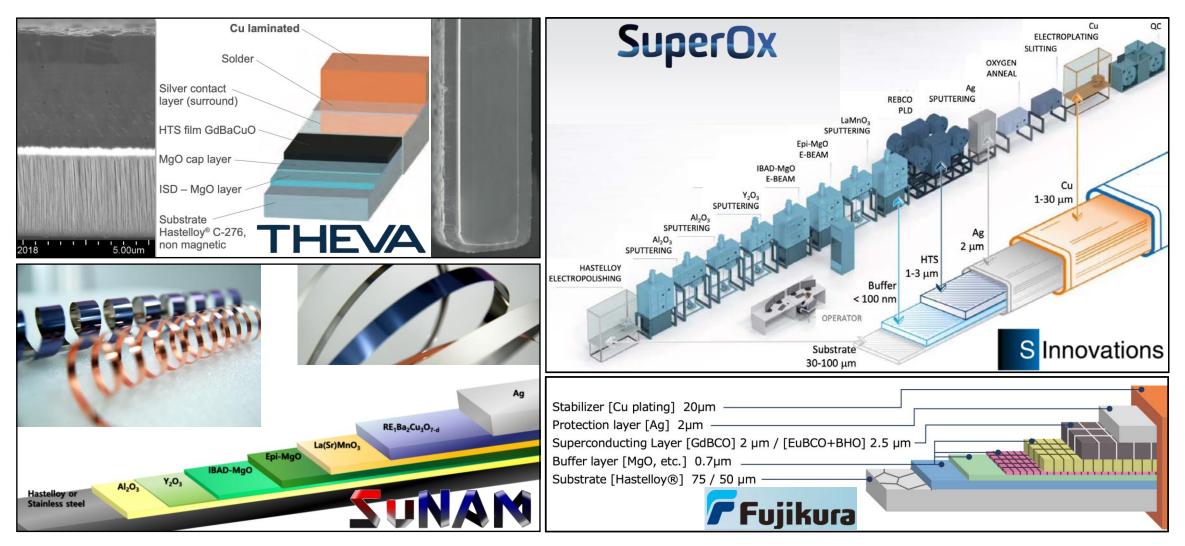

Ø 5 mm

Roll-consolidated reinforced cable

4.32 mm

2.41 mm

Otto, Low Temp. Supercond. Workshop (2022)


13

Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

REBCO conductors

A non-exclusive selection...

THEVA Product flyer (2021) W. Prusseit, *Virtual CCA conference* (2021) Molodyk, *15th EUCAS* (2021) Lee, *Virtual CCA* (2021) https://www.fujikura.co.jp/eng/products/newbusiness/superconductors/01/2052504_12808.html (2021)

14

REBCO cables

Some examples...

- Four main configurations
 - Roebel
 - KIT and IRL
 - Full transposition
 - Stacks in slotted core
 - ENEA
 - Cable On Round Core
 - ACT
 - Twisted Stack
 - Swiss Plasma Center

Goldacker, Supercond. Sci. Techn. 27, 093001 (2014) van der Laan, *Supercond. Sci. Techn.* **28**, 124001 (2015) Chiesa, Appl. Supercond. Conf. (2014) Uglietti, 13th EUCAS (2017)

15

10 mm

Global specifications of HTS

Upcoming Topical Review

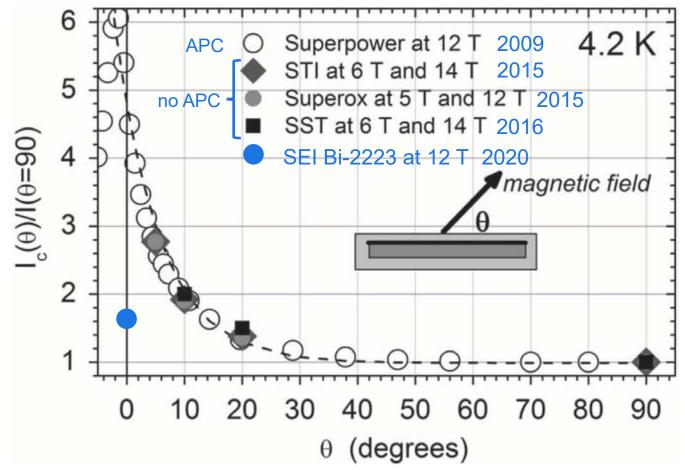

	Property	Bi-2212	Bi-2223	REBCO			
	Physical properties						
	Current manufacturers	Bruker-OST Solid Material Solutions	Sumitomo Electric Industries	> 10 companies			
	Superconductor	$\mathrm{Bi_2Sr_2CaCu_2O}_{8+x}$	$\mathrm{Bi}_{2-x}\mathrm{Pb}_x\mathrm{Sr}_2\mathrm{Ca}_2\mathrm{Cu}_3\mathrm{O}_{10-y}$	$[RE]Ba_2Cu_3O_{7-\delta}$			
	Construction	Ag/Ag-alloy matrix	Ag/Ag-alloy matrix	High-strength substrate			
	Superconductor fraction Ag/Ag-alloy fraction	$\begin{array}{c} \text{Optional reinforcement} \\ 2035\% \\ 6580\% \end{array}$	Optional reinforcement 30–40% 60–70%	Variable Cu-plating < 5% < 1%			
Cost of	Substrate fraction Copper fraction			50–98% 0–50%			
application	Form-factor	Twisted multi-filamentary wire	Non-twisted multi-filamentary tape	Single- or dual-layer tape			
	Typical dimensions	$\emptyset 0.15 - 1.5 \mathrm{mm}$ and squared	$4.2 \times 0.23 \mathrm{mm^2}$ (bare) 4.5×0.29 – $0.35 \mathrm{mm^2}$ (reinforced)	$2-40 \times 0.05-0.2 \mathrm{mm^2}$			
	State	Wind & React or pre-reacted	Pre-reacted	Pre-reacted			
	Piece length [m]	> 500	> 500	< 300			
Dorformance of	Electrical properties						
Performance of application ——	$J_{\rm E}(15{ m T},\!4.2{ m K})[{ m Amm^{-2}}]$	$200^{\mathrm{a}}700^{\mathrm{b}}$	$350-500^{ m c}$	$400 - 1500^{c,d}$			
application	Mechanical properties						
	Critical axial tensile stress [MPa]	100-130 (bare) > 250 (reinforced)	130 (bare) 250-525 (reinforced)	400-800			
L.	Usable axial strain window	0% to 0.3–0.6%	-0.1% to $0.25%$ (bare)	-1.2% to $0.40.7%$			
	Critical transverse compressive stress [MPa]	$70 (bare, impregnated)^{f}$	-0.1% to 0.57% $(1\%^{e})$ (reinforced) 70–100 (bare) 150–250 (reinforced)	300-750			

Conductor mechanics, not J_E, is the main driver for application performance

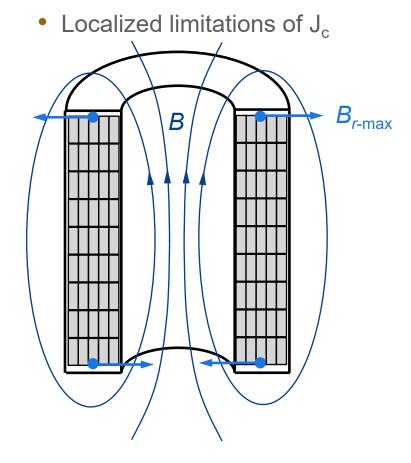
 \rightarrow J_E is much less dependent on field (vs LTS), so J_E mainly determines application cost of Arro Godeke 2022 ¹⁶

Mechanical loads on conductors

Complex 3D loads \rightarrow Tension, compression, shear, torsion, buckling,...



Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022 3D loads are key to successful applications. In AC applications also cyclic loads (fatigue)

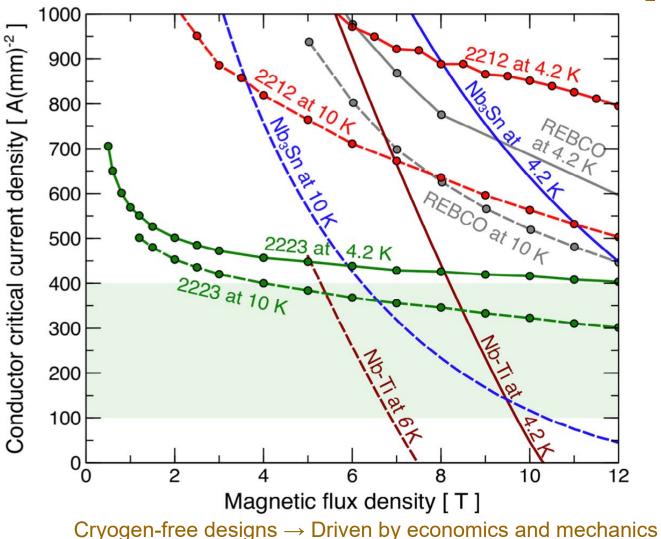

Anisotropy in HTS tape conductors

Critical current depends on angle

Angular dependence of the critical current

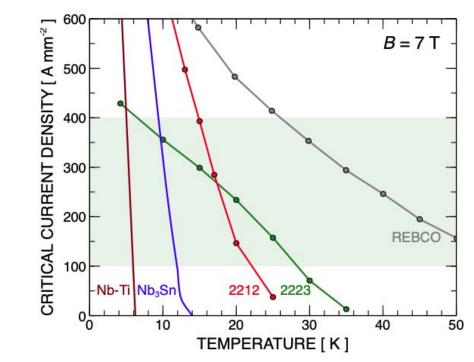
Practical consequence

Uglietti, Supercond. Sci. Technol. 32, 053001 (2019)


Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

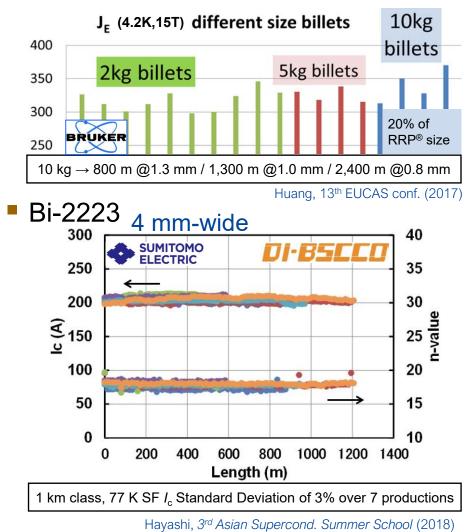
Angular dependencies are an important aspect of application design

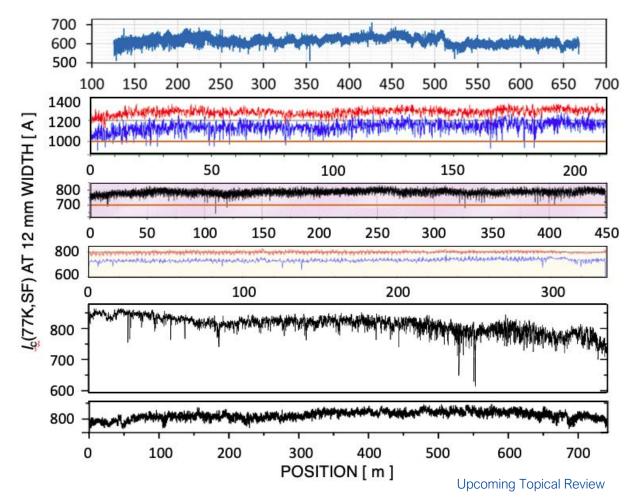
18


Critical current of HTS

Compared to LTS

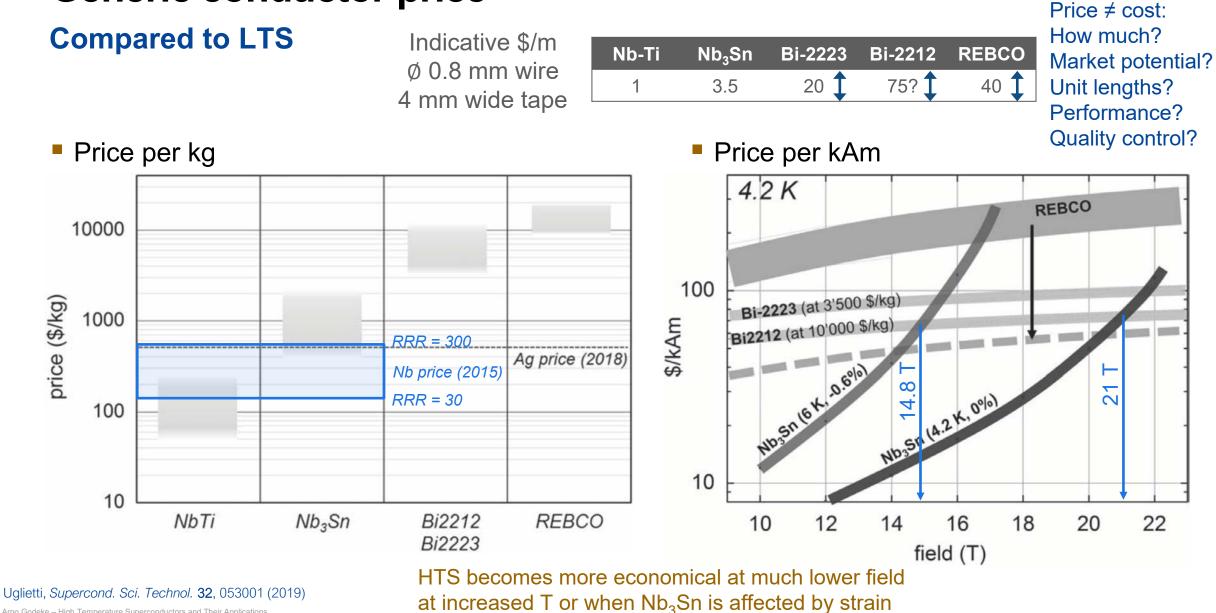
Key takeaways


- All HTS have sufficient J_E
 - For safe operation in the indicated field-range
- Dependence on B is less than LTS
- Cryogen-free: LTS has little or no margin


Godeke, Supercond. Sci. Technol. 33, 064001 (2020) © Arno Godeke 2022

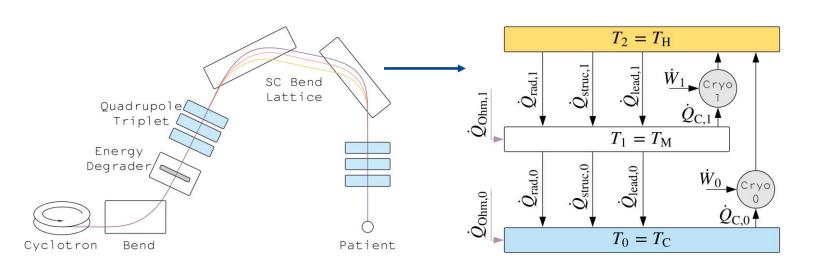
Manufacturing yield

Bi-2212



Bi-conductors: Traditional wire drawing REBCO: Harder to produce in long lengths

Generic conductor price


Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

Thermo-economic cost case study

Cryogen-free proton therapy magnet with a 20-year lifespan

4 T gantry bend magnet

Thermo-economic model

HTS is more economical for cryogen-free applications

Teyber, Supercond. Sci. Technol. 33, 105005 (2020)

Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

Findings

Conductor	$T_{\rm OP} [{ m K}]$	${\rm Cost}[k\$]$
Nb-Ti	6.8	116
Nb_3Sn	9.4	112
Bi-2223	12.8	196
REBCO	5.7	414

\$ Nb-Ti > \$ Nb₃Sn (!)

- Higher cooling needs
- Low thermal margin
- Si-2223 = \$Nb₃Sn + 80 k\$
 - But no reaction needed for HTS
 - HTS is more stable: No training
- \$ REBCO ≅ 2x \$ Bi-2223
 - Higher conductor capital cost

Agenda

- Low Temperature Superconductors
 - Why higher temperatures are cooler
- High Temperature Superconductors
 - Types, production, main properties, price

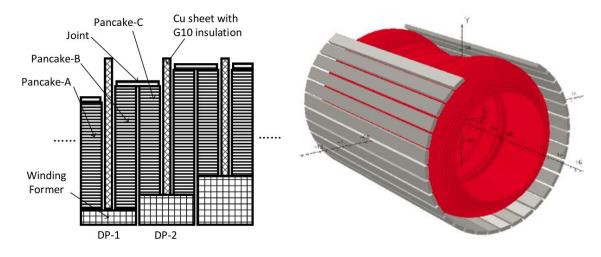
Applications

• Magnets, rotating machines, energy, ...

An outlook for HTS

Magnet applications (1)

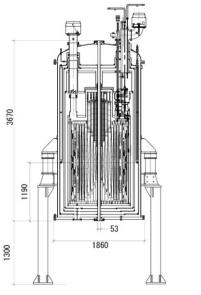
Magnetic Resonance Imaging (MRI)


- Cryogen-free pediatric 1.5 T MRI
 - For babies and infants

- Sumitomo Bi-2223
- Actively shielded, stray field < 10 m²
- Magnet mass < 2 tons

https://www.neoscan-solutions.com (2021)

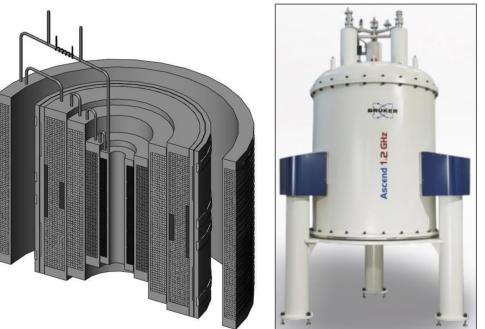
Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022 Design for a cryogen-free 14 T whole body MRI


- Sumitomo Bi-2223 HT-NX
- Magnet \rightarrow Length 1.9 m by 1.3 m OD
 - Half the size of 11.7 T LTS solution
 - Shorter than commercial 7 T LTS solution
- Compactness due to mechanical- and field-margins

Commercial medical application of HTS Compact high-field MRI with HTS

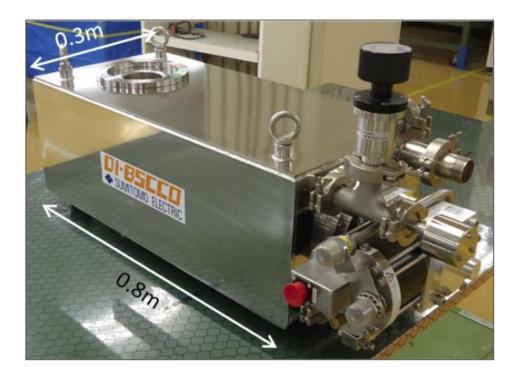
Magnet applications (2)

High-field NMR


- NIMS 1.02 GHz NMR
 - LTS limit is 1 GHz (23.5 T)
 - 920 MHz LTS system as basis
 - Inner coil replaced with Sumitomo Bi-2223
 - 1.02 GHz (24 T, driven) achieved at 1.8 K

Hashi, *J. Magn. Res.* **256**, 30 (2015)

- Bruker 1.2 GHz (28.2 T) NMR
 - LTS outer with REBCO insert at 2 K
 - Actively shielded
 - Commercial product
 - Persistent


Wikus, *Supercond. Sci. Technol.* **35** 033001 (2022) https://www.bruker.com/en/products-and-solutions/mr/nmr/ascend-ghz-class.html

Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022 1.3 GHz (30.5 T) under development (JST Mirai Program, Japan)

Magnet applications (3)

Laboratory magnets

- 5...10 T cryogen-free RT magnets
 - Sumitomo Electric Industries, Ltd.
 - Bi-2223

https://sumitomoelectric.com/super/applications/hts-magnet

- 6 T cryogen-free fast ramping VSM
 - Toei Industry Co.,Ltd
 - Industrial magnetization measurements
 - +/- 6 T operating at 20 K, 70 mm RT bore
 - B-H loop in 3 minutes
 - B-H loop with LTS is 30...40 minutes

Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

Magnet applications (4)

"Green" high field user magnets

- Superconducting cryogen-free 25 T
 - Tohoku University, Japan
 - Nb-Ti + CuNb reinforced Nb₃Sn LTS section
 - Sumitomo Bi-2223 HT-NX HTS section

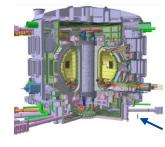
Awaji, Supercond. Sci. Technol. 30, 065001 (2017)

Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022 **Copper "Bitter" magnets** 31...35 T = 18...20 MW 41...45 T = 30...33 MW LHC accelerator + detectors: 120 MW

- Superconducting 32 T
 - NHMFL, Tallahassee, FL
 - Oxford instruments LTS outer section
 - Superpower REBCO HTS section

https://nationalmaglab.org © Arno Godeke 2022 27

Magnet applications (5)


Compact fusion reactors

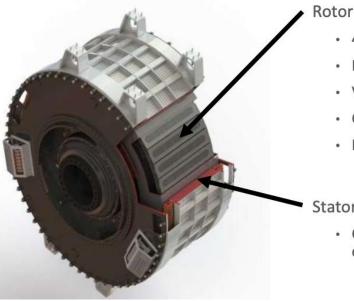
- Tokamak Energy (UK)
 - REBCO

- Plasma demonstrated in REBCO demo
- Large private investments
- Significant government support

Melhem, *IEEE Trans. Appl. Supercond.* **25**, 4202304 (2015) https://www.tokamakenergy.co.uk

International Thermonuclear Fusion Reactor \rightarrow 3+ decades of international development Reactor scales with B⁴ \rightarrow Compact high-B Tokamaks Person

- Commonwealth Fusion Systems (USA)
 - REBCO
 - 20 T demonstrated in full-size coil
 - This triggered 1.8B US\$ in private funding
 - Unprecedented levels in superconductivity


Thousands of km REBCO per system + huge funding + potential market size if successful = Incentives for large-scale REBCO production

Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

Rotating machines (1)

Superconducting windmills

- 3 MW-class, 14 rpm, 128 m rotor
 - THEVA REBCO racetrack coils in rotor at 30 K
 - Ground tested, installed: Thyborøn, Denmark
- Traditional windmills moved on (> 10 MW)

- 40 superconducting rotor poles
- Iron yoke as magnetic flux path
- Vacuum vessel for thermal insulation
- Cooled to 30 K (-243 °C)
- Rotating cryocoolers

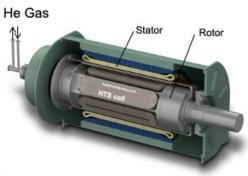
Stator

 Conventional copper stator, w/ high current density

Successful, but high upfront development costs for follow-up

Kellers, Univ. of Twente Symposium (2018) © Arno Godeke 2022

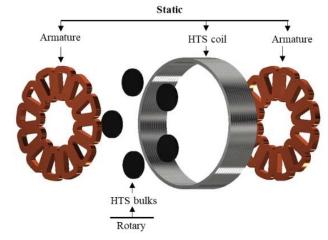
Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022


29

Rotating machines (2)

Electric motors

- 3 MW ship propulsion motor (Bi-2223)
 - Kawasaki Heavy Industries


- Electric vehicles (Bi-2223)
 - Sumitomo Electric Industries

Hayashi, 3rd Asian Supercond. Summer School (2018)

Electric planes

• Safran / Airbus / Univ. of Lorraine

- 50 kW prototype
 - 5,000 rpm, 52 kg
 - Bi-2223 stator, REBCO bulk rotor, T_{OP} = 30 K

Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

Energy applications (1)

Cables

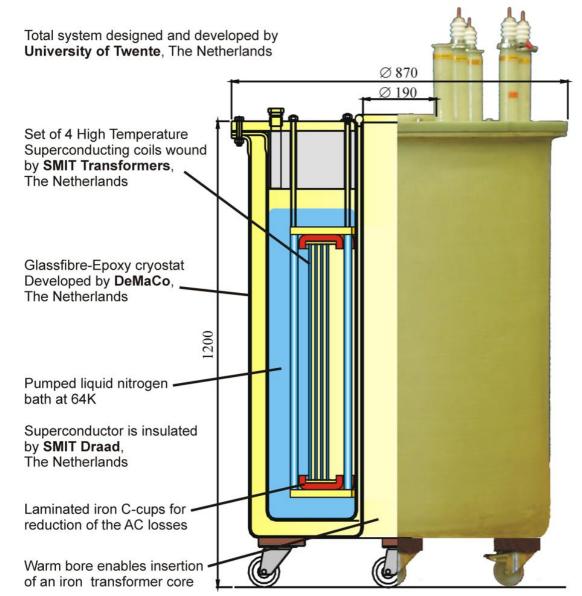
Sumitomo 3 phase cable

• Bi-2223

Arno Godeke – High Temperature Superconductors and Their Applications Plenary Lecture – HTS Modelling 2022 – Nancy, France – June 15, 2022

	Project (SEI supplied cable system)	V(kV)	l(kA)	L(m)	Site	Wire (Bi:DI-BSCCO)	Note
Japan	TEPCO/SEI	66	1.0	100	CRIEPI	Bi	Finished
	Chubu Univ. (DC)	20	2.0	200	Chubu. Univ.	Bi	In operation
	NEDO (MPACC)	66/275	5.0/3.0	15/30	Test yard	Y	Finished
	NEDO (Yokohama)	66	2.0	240	Asahi S.S.	Bi	In Operation
	SEI in-house demo	3.3	0.2	70	SEI Osaka	Bi	In Operation
	RTRI (DC)	1.5	5	30	Railway Lab	Bi	In Operation
	lshikari-METI (DC)	10	5	500, 1,000	Data Center	Bi	On going
USA	Albany	34.5	0.8	350	Grid	Bi/Y	Finished
	Ohio	13.8	3	200	Grid	Bi	Finished
	LIPA	138	2.4	600	Grid	Bi/Y	In operation
	Hydra	13.8	4	200	Grid	Y	On going
MEXICO	KASAT	13.8	1.75	17	Hydro P.S.	Bi	On going
EU	Denmark	30	0.2	30	Grid	Bi	Finished
	VNIIKP	20	1.4	200	Grid	Bi	Plan to Grid
	Essen	10	2.3	1,000	Grid	Bi	In operation
	St. Petersburg (DC)	20	2.5	2,500	Grid	Bi	On going
China	Yunnan	35	2	33.5	Puji S.S.	Bi	In operation
	Lánzhōu	10.5	1.5	75	Super - Substation	Bi	In operation
	IEE/CAS(DC)	1.3	10	360	Al mining factory	Bi	In operation
Korea	КЕРСО	22.9	1.25	100	Lab	Bi	In operation
	DAPAS1	22.9	1.25	100	Lab	Bi	Finished
	DAPAS2	154	3.75	30	Lab	Y	Finished
	GENI	22.9	1.25	410	Icheon S.S.	Y	Finished
	Jeju	154	2.25	1,000	Grid	Y	On going
	Jeju (DC)	80	3.12	500	Grid	Y	In operation

Renewable energies causing grid overflows: Trigger for cables?


FCL: Allais, Tuesday plenary

Energy applications (2)

Transformers and Fault Current Limiters

- An early HTS "transformer" demo
 - Univ. of Twente around 2000
 - With SMIT Transformers and SMIT Draad
 - 4 concentric industry-wound Bi-2223 coils
 - Vacuumschmelze + American Superconductor tape
 - Configured as a 1 MVA resonator coil
 - Ferromagnetic reduction of radial field at ends
- Significant parallel efforts, same period
 - ABB, Siemens, AMSC,...

Will climate issues trigger revisiting such transformers?

Godeke, Physica C 372-376 1719 (2002)

An outlook for HTS

The dawn of commercial applications of HTS

- Climate
 - Private money \rightarrow Public opinion (\rightarrow Legal \rightarrow Money) \rightarrow Governmental policy \rightarrow Funding \rightarrow Action
- Less fossil fuels
 - \rightarrow Helium shortages \rightarrow Helium price \rightarrow Action
- Renewable energy
 - \rightarrow Grid overloads \rightarrow Incurred **costs** due to grid failures and lack of availability \rightarrow **Action**
- Governmental policy changes & funding + bold investors and entrepreneurs = Action
 - Cryogen-free MRI and Compact Fusion \rightarrow Today
 - Strong incentives for rotating machinery & utility industry \rightarrow Tomorrow
- Commercial applications are inevitable (after 35 years) → Driven by climate + helium shortage

Acknowledgements

Conductor manufacturers for providing their beautiful slides

Colleagues from around the globe that kindly provided inputs

Referrals are given on the slides

Thanks!

Thank you!

Contact: agodeke@icloud.com