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Abstract—In this paper, a fast integral modeling approach is 

proposed for the design and the characterization of large-scale 

non-inductive high temperature superconducting coils. The 

calculated AC losses are compared to that obtained with Norris’ 

formulas and to measurements. 
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I. INTRODUCTION 

High temperature superconducting coils present a great 

interest for electric power applications, such as electrical 

machines and superconducting power filters. For an accurate 

design of such coils, numerical models are required to predict 

the electromagnetic properties consisting of the critical 

operating current and the AC dissipated losses. 

Several approaches have been developed for the modeling 

of HTS, the finite element method based on H formulation is 

the most commonly used. However, when the modeled 

system consists of a set of distributed sources and has multi-

scale dimensions, such as HTS coils, this method becomes 

costly in memory space and computation time. In this case, 

integral methods are more suitable because it limits the 

discretization to the active parts of the system and no 

boundary conditions are required [1-2]. When the coils are of 

large size (great number of turns), even the integral 

approaches present difficulties to model such systems, due to 

the great number of the discretization elements. In this case, 

modeling strategies have to be adopted to reduce the size of 

the matrices and the computing time, such as the fast 

multipole method [3] leading to a far-tape approximation 

strategy in this case [4]. In this work, the far-tape 

approximation is applied to model a large scale non-inductive 

HTS coil carrying AC currents, leading to a successive 

modeling of a very reduced set of tapes of the HTS coil. This 

results in a considerable gain in memory space and 

computing time. 

II. THE MODELING APPROACH 

The modeled system consists of an Nt-turn circular 

pancake coil of inner and outer radii, respectively denoted Rint 

and Rout, wound with a first generation HTS tape of width Ht 

and thickness Wt as illustrated in Fig. 1. The electrical 

behavior of the HTS materials is modeled by an E-J power 

law, associated with Kim’s law to consider the Jc(B) 

dependency, both given in (1), where E and Ec are the electric 

field and its critical value; n is the creep exponent; Jc0 is the 

critical current density at the zero magnetic field; B0 and β are 

physical parameters depending on the considered 

superconducting material; and k is a parameter of anisotropy. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The cross-section geometry of the HTS coil and its discretization. 
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Since the coil is non-inductive, and the current is imposed 

in the coil, the far-tape approximation allows us to transform 

the hole coil modeling to a successive modeling of an odd set 

(nt) of consecutive tapes, where the physical quantity of 

interest is evaluated in the middle tape. The sequence is 

repeated to deal with all the coil tapes by sliding the nt 

consecutive tapes by one tape at each iteration. The 

discretization leads thus to only a number (Ne= nt×Nr×Nz) of 

elementary sections (∆𝑆) for each computation sequence. The 

distributions of the magnetic vector potential �̅�, and both of 

the radial and axial components (𝐵𝑟
̅̅ ̅, 𝐵𝑧

̅̅ ̅) of the MFD in the 

tapes section are given in (2), where  𝐺𝐴
̿̿ ̿ , 𝐺𝐵𝑅

̿̿ ̿̿ ̿  and 𝐺𝐵𝑍
̿̿ ̿̿ ̿ are 

(Ne×Ne) integral matrices and 𝐽 ̅ is a vector containing the 

current densities of the Ne elementary sections.  
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The AC modeling approach is based on the expression of 

the electric field as function of the magnetic vector and 

electric scalar potentials (𝐴 , 𝑉) given by (3), considering the 

non-linear E(J) characteristic. 
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The value of ∇⃗⃗⃗𝑉 is constant over the entire cross section of 

a tape, and can be used to impose the conservation of the 

current in each tape [5]. The matrix form of (3) can thus be 

expressed as follows: 

 

𝐺𝐴
̿̿ ̿ 𝜕𝑡 𝐽 ̅ = −𝐸𝑐{𝐽/̅𝐽�̅�}𝑛 −  𝛾𝑆 ̿{𝐽 ̅ − 𝐽�̅�}            (4)        

 

where 𝛾 is a feedback constant, and  𝐽�̅� is applied in such a 

way that the current flows in the opposite direction in two 

consecutive turns. The matrix system (4) is solved using the 

ODE solver “ode15s” in Matlab. 
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III. RESULTS AND DISCUSSIONS 

An insulated non-inductive HTS coil made of BSCCO/Ag 

multi-filamentary tape has been constructed and 

characterized. The parameter specifications are given in 

Table I. The measured critical current of the coil is 168 A, 

while that of the tape is 170 A, highlighting the effect of the 

geometry on the HTS performances.  

TABLE I.  PARAMETERS SPECIFICATIONS 

Parameter Value Description 

Ic (77K) 170 A Tape critical current at zero external field 

L 102 m Length of the superconducting tape 

Wt / Ht 0.23/4.3 mm Tape thickness / Tape width 

Rout /Rint 27 / 9 cm Outer/Inner radius of the coil 

Nt 92 Number of the coil turns 

Ec 1 µV/cm Critical electric field 

n 15 Creep exponent 

Ic0 184.51 A Critical current at zero MFD 

k 0.14 Parameter of anisotropy 

B0 / β 0.14 T /2.25 Constants used in (1) 

γ 100 V/(A.m) Feedback constant 

 
The developed approach is applied to the HTS coil for the  

determination of the current density J distribution and the 
evolution of the AC losses dissipated for each value of the 
applied current. 

Figure 2 shows the distribution of J in the last sequence 

(last five tapes), for a sinusoidal applied current of 115 A 

amplitude and 40 Hz frequency, at three different instants: 

t=T/4, t=T/2, and t=3T/4, where T is the period. In the plots, 

the thickness of the superconducting tapes has been expanded 

in the r-direction to better highlight the current repartition. 

Since the coil is non-inductive, we can notice that the current 

flows in the opposite direction in two consecutive turns and 

penetrates each tape from the outside, until a distance 

depending on the critical current. When the current decrease, 

an inverse current is induced from the outside, so that when 

the applied current is zero at t=T/2, the current density in each 

tape is not locally nil (Fig. 2-b), but its integral over the 

surface of each tape is nil. At t=3T/4, we have a reverse 

situation compared to t=T/4. 
The AC losses dissipated in the HTS coil for a frequency 

of 40 Hz, using the modeling approach are reported in Fig. 3, 
compared to the measurements and the losses calculated with 
Norris formulas at the same frequency. As we can notice, the 
experimental and numerical results show a good agreement 
and they are located between the Norris’s formulas given for 
a strip and elliptical section.  
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Fig. 2. Distribution of the electric current density in the last five tapes cross 

section at 40 Hz, for an applied current 𝑖(𝑡) = 115 sin(2𝜋𝑓𝑡) with: (a) 

t=T/4, (b) t=T/2, (c) t=3T/4. 

 

Fig. 3. Comparison between the numerical and experimental AC losses and 

the losses calculated with Norris formulas for a frequency of 40 Hz.


