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I. Introduction

The apparition of hot spots is one of many challenges
that slow the adoption of second-generation high temper-
ature superconductor coated conductor (2G HTS CC).
Hot spots appear due to the variation of the critical
current along the length of the tape. When the injected
current reaches a low local critical current, it results
in the generation of heat and a rapid rise of the local
temperature (hot spot). This generation of heat can lead
to the formation of a normal zone (quench) and its
propagation under certain conditions.

It is possible to simulate the quench dynamics of 2G HTS
CC by solving the coupled electro-thermal equations using
a finite element method. Indeed, the heat equation and
the current continuity equation are coupled by the heat
source, which is defined by the Joule losses generated
by the hot spots. One of the challenges of this problem
is the nonlinear nature of superconductor conductivity
which can make the computation expensive and unstable.
Moreover, for particular architecture of HTS tape, the
simulation has to be done in 3D, which leads to simulations
that last many hours.

Instead of using deterministic methods like the finite
element method to simulate the quench dynamics, we
propose in this work to use a “physics-guided” data-driven
method in order to speed up the computation. The model
we propose is inspired by recent work on machine learning
(ML) models that have been developed to solve nonlinear
dynamical systems [1], [2]. It is also inspired by some
studies who tried to incorporate some structure of classical
numerical methods (like finite difference and finite volume
methods) in their model architecture [3].

II. Machine learning model

The model we propose is a physics-guided recurrent ML
model used to make long-time predictions of the temper-
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ature evolution over time in the presence of hotspots of
a 2G HTS CC. Our model speeds up substantially the
resolution of the full 3D electro-thermal coupled problem.
The ML model is trained with multiple simulations of
quench propagation generated by a standard finite element
solver (COMSOL). The different simulations are run with
randomly generated parameters like the tape architecture,
the initial conditions and the heat source. The model
is expected to predict the quench dynamics for any
architecture and initial condition without the need for
retraining. The model is then used in a recursive way to
predict the temperature along the tape at every time step.
To test the ML model progressively, we decided to decou-
ple the thermal and electrical problem. To do so, two ML
models are defined: a model to predict the electric field
(fr) and a model to predict the temperature (fr). The
architecture of fg is a simple neural network. This model
is trained using values of temperature (T') and electric
field (E) along the tape, extracted directly from the 3D
COMSOL simulation. This model is relatively easy to fit
since the relationship between T" and F is related to the
power law (imposed in the COMSOL simulation) and the
current sharing between the layers of the HTS tape.

The model fr is the real innovation of this work. It is
characterized by an architecture that uses hard physical
constraints under a Dufort-Frankel discretization scheme
of the nonlinear heat equation in order to guide the
solution to respect the conservation of energy and heat
fluxes. The model is implemented using the deep learning
library PyTorch. The material properties (defined as a
function of temperature) are implemented as two neural
networks, which give some degree of freedom to the model.
The spatial derivatives of the material properties are
obtained using the “automatic differentiation” described
by Raissi [4]. Also, the finite differences, defined by
the Dufort-Frankel discretization scheme are implemented
using convolution layers implemented with PyTorch. The
weights of the different filters of these layers add additional
degrees of freedom to the model.
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Fig. 1. Decoupling of the thermal and electric problem with two ML
models (fg and fr)

The two models (fg and fr) are used in a recursive,
way as describe in figure 1. The model fr is first used
to predict the temperature at the next time step. Then,
fE predicts the electric field at this new time step. The
same process is repeated every time step in a recursive
manner. In order to reduce the accumulation of errors
due to the recursive nature of the model, an adaptive
training strategy is used [1]. One could say that, to
avoid the accumulation of error, a non-recursive technique
could be employed in order to avoid the problem of error
accumulation. However, because the heat source changes
every time step and depends on the previous predictions,
the model has to be recurrent and the problem has to be
solved step-by-step.

Many COMSOL simulations were generated for different
heat source profiles in order to generate a dataset that
can feed fr. Ten simulations were run using a randomly
generated time-varying heat source that emulates the
dynamics of hot spots. The nonlinear heat equation was
solved in 3D using the heat transfer module of COMSOL
on a geometry consisting in a stack of silver, YBCO and
hastelloy thin films. The problem could have been solved
in 1D, but we created a 3D COMSOL model in order
to consider 3D effects on the quench dynamics in a near

future. III. Results

Figure 2 shows the root mean squared error (RMSE)
of the ML model on the test set compared to the finite
element true solution (COMSOL) along time. The error
is the average of the temperature distribution along the
tape at each time step. The predictions are compared
with a solution computed using a standard finite difference
method (FDM) in 1D. One can see that the ML model
(trained with the 3D COMSOL simulations) outperform
the standard FDM and seems less affected by the accu-
mulation of error.

Figure 3 shows an example of prediction of the material
properties learned during the training. The neural net-
works learned properly the temperature-dependent mate-
rial properties in the range of temperature seen during the
training (vertical dotted lines).

IV. Conclusion

We showed that our machine learning model can min-
imize the accumulation of error compared to a standard
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Fig. 2. Error of the ML model and the finite difference method vs.
time
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Fig. 3. The true values of material properties were used to generate
the dataset. The prediction are made using the two neural network
(after training) used to describe the temperature dependence of these
variables. Only values lying between the vertical dotted lines were
learned by the ML model.

numerical method (here the finite difference method).
We also showed that the temperature-dependent material
properties can be learned from finite element simulation
results. Finally, we showed that for simple cases, the model
converges to a classical finite difference method, but it
has the potential to generalize to more complex cases and
include effects that a simple classical numerical methods
cannot take into account.
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