
Modeling of HTS coils with complex geometries by
using the T-A homogenization in 3D

1st Carlos Roberto Vargas-Llanos
Institute for Technical Physics (ITEP)
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
carlos.vargas-llanos@kit.edu

2nd Felix Huber
Electronic and Electrical Engineering

University of Strathclyde
Glasgow, United Kingdom

felix.huber@strath.ac.uk

3rd Nicolò Riva
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Abstract—The modeling and analysis of superconducting
coils is an essential task in the design stage of most
HTS based devices. These calculations allow verifying
basic estimations/assumptions, proposing improvements,
and computing quantities (such as AC losses) that are not
easy to calculate with analytical approaches. Typically, 2D
finite element analysis is used for this purpose. However,
these 2D models are usually a representation of infinitely
long or axially symmetric geometries. Therefore, they
cannot be used to analyze end effects and complex 3D
configurations. In this work, we use the T-A homoge-
nization in 3D for the analysis of superconducting coils
with complex geometries where a 2D approach can not
provide accurate analyses and verification of assumptions.
For these complex geometries, the modeling methodology
allows an easier implementation in commercial software
(COMSOL Multiphysics) than the currently available 3D
H homogenization.
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I. INTRODUCTION

The electrical properties of high-temperature superconduc-
tors (HTS) have inspired several applications in different fields
such as electrical machines [1], [2], [3]; fault current limiters
[4]; magnets for scientific research [5]; energy storage [6] and
transmission [7]. The design of these devices usually requires
an electromagnetic analysis that allows establishing rated
characteristics as well as studying the behavior under different
operating conditions. Moreover, losses in the superconducting
tapes and wires must be estimated to design the cooling
system. These AC losses can be decisive for the practical and
economic realization of superconducting devices.

Several analytical solutions have been developed to estimate
losses in HTS tapes [8], [9], and infinite stacks of tapes
[10], [11], [12]. However, these solutions are only valid under
specific operating conditions such as AC transport current
or externally applied magnetic field. Therefore, they can not
be directly used to estimate losses in most superconducting
machines and equipment. For these reasons, a finite element
model is typically used to analyze the electromagnetic behav-
ior and estimate hysteretic losses in the HTS tapes.

There are two main formulations of Maxwell’s equations
that are commonly used to model superconductors by using
the finite elements method (FEM). The first one is based on
the magnetic field strength (H) and has already been used
to study numerous applications [13], [14]. The second one
was introduced in [15] and is based on the current vector
potential (T) and magnetic vector potential (A). This T-A
formulation is mostly used to analyze superconducting layers
by applying a thin strip approximation. The approximation
allows a reduction of dimensions that decreases the number
of degrees of freedom and computation time. Therefore, it
has been used to study the cross-section of magnets [5] and
electrical machines with hundreds and thousands of tapes [16],
[17], [18].

Most of the FEM-based models used to study superconduct-
ing devices are 2D. They usually represent the cross-section of
an infinite long or axisymmetric arrangement. Therefore, the
end effects are not considered. Moreover, complex geometries
and operating conditions can not be fully studied with a 2D
model. For instance, the transport current (without externally
applied magnetic field) operating condition in a saddle coil
(figure 1) presents a complex 3D behavior of the current. In the
middle of the straight section, the current flows parallel to the
x-axis. However, the curve section works as a transition zone
for the current vector from the x-direction to the y-direction,



by following the winding/position of the tapes. This end effect
can not be analyzed by using a 2D model.

Due to the complex behavior of the current density (J)
in 3D geometries, the cartesian components (Jx, Jy, Jz) are
not suitable for representation purposes. A possible way to
overcome this problem is to use the norm of J. However, we
will not be able to appreciate the two fronts of currents in
opposite directions during the AC cycle. Therefore, we use the
dot product between the current density vector and a tangential
vector parallel to the winding direction (et):

J � et
Jc(B∥, B⊥)

. (1)

In figure 2 we represent the current density behavior in the
same saddle coil for an AC transport current with a peak value
of 100A and frequency f = 50Hz, when the current is equal
to zero, and after the first half period of the sinusoidal cycle.
The current density penetration and behavior is very similar in
the middle of the straight and circular sections. There is only a
small difference between the inner and outer part of the curved
section (indicated with green arrows in figure 2). This small
difference is an effect of the self-field of the coil, which tends
to be higher inside the coil than outside. According to these
results, a 2D model that represents the middle of the straight
section of the saddle coil can provide a good approximation
of the current density behavior and a first estimation of the
AC losses. However, these kinds of assumptions can only
be validated with a 3D approach. For these reasons, several
efforts have been made for the development of tools and
methodologies that allow 3D modeling of HTS coils [19], [20],
[21], [22], [23]. As part of these efforts, in 2014 the 3D H
homogenization was introduced with the model of a racetrack
coil [24]. However, the implemented approach requires the
use of high resistivity layers in the homogenized domain,
which make the building of the geometry and of the mesh
more complex. Five years later, the 3D homogenized T-A
formulation was proposed by Huang et al. [25], who used it to
calculate the AC transport losses of HTS racetrack coils. In this
work, we expand the current knowledge by using the 3D T-A
homogenization for the simulation coils with complex shapes
such as racetrack, saddle and twisted coils. The modeling
approach is based on normal vectors that follow the shape
of the 3D geometry. Therefore, this general definition allows
an easy implementation of the model despite the complexity
of the geometry.
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