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Abstract—We present a new spectral method for solving 2D 

magnetization and transport current superconducting strip 

problems with an arbitrary current-voltage relation, spatially 

inhomogeneous strips, and strips in a nonuniform applied field. 

The method is based on bivariate expansions in Chebyshev 

polynomials and Hermite functions and can be employed for 

numerical modeling magnetic flux pumps of different types and 

investigating AC losses in coated conductors with local defects. 

Using a realistic 2D version of the superconducting dynamo 

benchmark problem as an example, we show that this spectral 

method is a competitive alternative to finite element methods.  

Keywords—spectral method, high-Tc superconducting 

dynamo, inhomogeneous superconducting strip.  

I. INTRODUCTION  

Although finite element methods remain the most popular 
and versatile tool for solution of applied superconductivity 
problems, alternative approaches have also been proposed 
recently. One of them is the FFT-based methods for the 2D 
thin film and 3D bulk problems [1,2], another is based on the 
Chebyshev spectral methods derived for the problems 
formulated as a 1D integrodifferential equation with a 
Cauchy-type singular kernel or as a system of such equations 
(superconducting strips with or without transport current in a 
uniform field, stacks of strips, pancake coils) [3].  Ideally, the 
spectral methods demonstrate an extremely fast exponential 
convergence. Even if this is not achieved, e.g., if the solution 
is not smooth enough, etc., they can still be at least as efficient 
as the finite element methods. Here we extended the spectral 
method to the 2D thin strip problems. 

      While Chebyshev polynomial expansions are convenient 

for solving 1D integral equations with the Cauchy and 

logarithmic type singular kernels, no similar approach has 

been developed for the Green-function-based 2D integral 

formulation. To circumvent this difficulty, we applied the 

Fourier transform in the along-strip direction. For each wave 

number, the 2D integral equation is represented in the Fourier 

space by a 1D singular integral equation written for the 

transverse coordinate; expansions in Chebyshev polynomials 

can be used to efficiently solve these equations. To realize 

this approach, one needs an efficient numerical 

implementation of the direct and inverse Fourier transforms. 

Typically, this is realized by replacing the infinite domain by 

a sufficiently large finite one and using the FFT algorithm on 

a uniform mesh. A different method we explored in our work 

is based on expansions in the Hermite functions which 

diagonalize the Fourier transform. An approximate solution 

to the 2D integrodifferential problem is, therefore, sought at 

each moment in time using bivariate Hermite-Chebyshev 

expansions. The method of lines is employed for integration 

in time. 

II. PROBLEM FORMULATION 

Let the superconducting strip of the width 2a  be represented 

by a 2D domain in the plane 0 :z =    | | , | | .x y a =     

Introducing the stream (magnetization) function ( , , )g x y t  

satisfying ( , )y xg g g=  =  −j , where j  is the sheet 

current density, we present first the problem formulation for 

the case of a nonuniform external field vanishing at infinity 

and zero transport current: 
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where e ( , , )zh x y t  is the z-component of the applied magnetic 

field in the strip plane and g  means 
t g .  Here we assumed 

the power current-voltage relation 1

0( ) ( / ) /n

c ce j j j−=e j j

with a field-dependent and, possibly, spatially 

inhomogeneous sheet critical current density 
cj  which, 

however, becomes spatially homogeneous as .x→   

Applying the Fourier transform with respect to x  to the 

integral equation above, using the convolution theorem, and 

singling out the singular parts of the integral kernels, we 

obtain a 1D integrodifferential equation for g  in the Fourier 

space for each wave number ,k  
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 where [ ]f F f= denotes the Fourier transform,  

( )e 1

0 ,z x y y xZ h e e−= +  −  and the functions ( ),k y y−  

and ( ),k y y− are regular.  

      For problems with a given transport current ( )I t  and a 

nonvanishing but uniform at infinity external field 
e e( ( )t→h h  as )x→ ,  the formulation (1) in the Fourier 

space has to be modified and written for the difference,  



( , , ) ( , ),g g x y t g y t = −  where ( , )g y t  is the solution of a 

1D strip problem with the same transport current, the uniform 

external field e ( )th  and spatially homogeneous
cj . 

III. NUMERICAL METHOD 

To solve the singular integral equation (1), for each wave 

number k we seek ( , , )g k y t  as an expansion in Chebyshev 

polynomials depending on /y a  and this enables efficient 

treatment of both kernel singularities.  The interpolating 

expansions in scaled Hermite functions ( / )j x L , vanishing 

at infinity and satisfying [ ( / )] 2 ( i) ( ),j

j jF x L L kL  = −  

are used for the approximate Fourier transform of functions 
and its inverse; here L  is the scaling factor. A standard solver 
is used for integrating in time the system of ordinary 
differential equations for the mesh node values of g . Details 

of our numerical scheme, including the algorithms for linear 
operations on the bivariate Hermite-Chebyshev expansions 
(interpolation, differentiation, integration, Fourier transform), 
can be found in [4]. Here we present two numerical examples. 

IV. EXAMPLES 

A. Inhomogeneous Strip with Transport Current 

Let the transport current be harmonic, 200sin(2 / )I t T=  

A, with 0.02T = s. We assume the strip width 2 12a = mm, 
e

0, 0,g= =h 0 and 20n =  in the power ( )e j relation with 

the critical sheet current density 0 ( ) ( ),r h

c c zj j h = r  where 

0 23.6A/mmcj = , 1 ( , ) ( , )r x a y a x a y a  = + + + − − −  

with ( )2 2 2( , ) 0.75exp 2 /x y x y a  = − +   describes the 

spatial nonuniformity of the strip, and 1

01/ (1 | |)h

zh h −= +  

with 0

0 c20h j=  describes the dependence on the magnetic 

field. Numerical simulation results are shown in Fig. 1. 

B. Strip in a Nonuniform Field: the Dynamo Flux Pump 

A realistic 2D version of the simplified 1D superconducting 

dynamo flux pump “benchmark” problem [5] was solved by 

the finite element methods in [6,7] and also by the FFT-based 

method in [6]. Now we use the spectral method and compare 

(Fig. 2) the calculated voltages, V(t), induced in the 

superconducting strip (dynamo stator) by the rotating 

permanent magnet attached to the dynamo rotor; the open 

contour conditions are assumed. The rate of convergence was 

estimated using the relative voltage deviation (in the 1L

norm), ,V  from the most accurate solution for each method 

(Table I); these results confirm the efficiency of the new 

spectral method.  

TABLE I. Convergence of Two Numerical Methods. 

Mixed finite elements [6] Spectral method 

N of 

elements 

Time/cycle 

(min) 
V  

(%) 

Mesh Time/cycle 

(min) 
V  

 (%) 
x yN N   

1056 3.4 4.5 60 30 3.3 2.4 

2180 33 1.6 90 46 31 0.9 

4226 118 --- 120 60 186 --- 
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Fig. 1 Top: Sheet current density at the peak of the transport current 
(spatial inhomogeneity of the strip is indicated by the background 
colour). Bottom: Time-averaged loss power density. 

 

Fig. 2 The voltage induced during the second rotor rotation 
computed by the mixed finite element method [6] and using the spectral 
Hermite-Chebyshev method.  


